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ABSTRACT 

The complete genomic sequences for many organisms, particularly 

primitive organisms with relatively small genomes (prokaryotes), are 

now available. We describe an approach that supports interactive 

exploration of patterns in genomic data by combining use of positional 

weight matrices, the k-means clustering algorithm, and a visualization 

tool. Users interact with the system by examining a visualization of the 

“average” pattern found in each cluster for the sequence under 

consideration and determine if further clustering or modified clustering 

is desired. The effectiveness of this approach is demonstrated by a 

study of promoter sequences in archaea. 

INTRODUCTION 

Clustering has received renewed attention within the last ten years as a field 

of study within knowledge discovery and data mining. The massive amounts of 
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data that have become available in a variety of fields has prompted new research 

in the use of traditional clustering algorithms and the development of new 

algorithms [8]. Key problems to deal with in cluster analysis are determining 

which features to use to generate meaningful clusters and interpreting cluster 

results. Interactive clustering has received substantial attention within the text 

mining community [1, 16]. We describe an interactive, iterative clustering 

approach for exploration of genomic data that allows scientists to visualize 

cluster results and direct the clustering process. This method allows incremental 

exploration of clusters of sequential patterns. 

Gene clustering attempts to partition sequences composed from an alphabet 

of four nucleotide bases (A,T,C,G) into different groups based on a feature 

vector representation of each sequence. Gene clustering techniques have been 

used to explore a variety of problems including expression profile analysis, 

promoter identification, mRNA splicing site detection, and regulon prediction 

[2, 6, 15, 24]. The performance of each gene clustering method varies according 

to feature vector representation and clustering algorithm implementation as well 

as the specific problem [8, 10].  

The method we describe uses a positional weight matrix for comparing 

sequences, the k-means clustering algorithm (with k = 2 at each step) to generate 

clusters, and a visualization tool that allows the user to analyze clustering results 

and direct further clustering. Our use of this approach in the study of promoter 

sequences in several species of archaea has yielded interesting scientific results.  
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In the remainder of this paper, we present related work, describe the method 

we have developed, introduce the genomic question that we have studied using 

the method and present results of one study. 

RELATED WORK 

Clustering methods have been widely applied in data analysis in many 

fields [8]. In their review of clustering methods, Jain et al. [10] report that the k-

means clustering algorithm is one of the most frequently and successfully used 

methods.  It is popular for clustering large datasets due to its simplicity and its 

small time and space complexity [10]. Different variants of k-means with regard 

to pattern representation, feature selection and extraction, similarity measures, 

and initial partition selections have been described [8, 10]. Recently, k-means 

clustering has been successfully applied to cluster gene expression data [17]. 

Positional weight matrices (PWMs) are a statistical model for representing 

the feature vector using probabilistic values at each position of the data set. 

Since their introduction into biological sequence analysis, PWMs have been 

utilized as a standard method to represent the promoter signal [4, 5, 21] and have 

been successfully used for promoter prediction [7, 12, 14]. This representation 

has also been used to evaluate the transcription factor bindability of DNA 

sequences [23].  

The combination of positional weight matrices and neural network 

clustering algorithms was described initially to predict the O-glycosylation sites 

in proteins [9]. Murakami and Takagi [15] combined the k-means clustering 

algorithm and positional weight matrices for the detection of 5’ terminus of the 
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splicing sites of mRNA. They report that their method exhibited better 

performance than using positional weight matrices alone. Recently, Van et al. 

[24] combined positional weight matrices and Monte Carlo sampling partition 

methods to successfully identified regulatory sites in the genome sequence of E. 

coli. 

INTERACTIVE GENE CLUSTERING 

We describe a method for studying groups of genes from a single genome 

or group of related genomes that allows scientists to explore different sequence 

patterns.  Figure 1 illustrates our interactive, iterative gene clustering approach. 

 
 

Figure 1 Interactive gene clustering algorithm. 
 

The sequence data for a genome is downloaded from Genbank or some 

other repository, the subsequences of interest relative the beginning or end of 

Download data from Genbank

Compute positional weight matrices

Construct feature vector for each gene 

Cluster with K-means

Visualize results

Conclusions

Select clustering without clear 
patterns for further clustering 
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each gene are extracted and the positional weight matrix is computed. Feature 

vectors are constructed using the positional weight matrix and these feature 

vectors are clustered. A visualization of each cluster is produced using a 

positional weight matrix for each cluster.  At this point the user can choose to 

terminate the clustering process or can invoke the clustering algorithm on one of 

the clusters.  The result is a binary tree of clusters.  We have applied this process 

to the 5’ flanking region of genes of species of archaea in order to identify 

different regulatory patterns.   

Biological sequences such as DNA and protein can be thought of as strings 

of characters from an alphabet.  DNA sequences use a four character alphabet 

(A, T, C, G).  Positional weight matrices are used to represent the probability of 

each character at each position in a sequence.  Given a set of sequences S = {S1, 

S2, S3, …, Sm}, the positional weight matrix of S can be computed as  
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where n is the length of the sequence, m is the number of sequences, and fi is the 

expected frequency. Figure 2 illustrates the process of computing the positional 

weight matrix for a group of sequences.  Each DNA sequence is converted to 

four binary sequences, one for each base.  The binary vectors for each base are 

summed by position. The value at each position is then divided by the expected 

frequency of each base. The log of these values is then taken to give the log 

likelihood of each base occurring in each position.  Positive values represent a 

high likelihood and negative values represent a low likelihood of occurrence.  
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The feature vector for a particular sequence is constructed by selecting the 

probability of occurrence of the base in each position in the sequence from the 

PWM for each position [4]. 

Although our approach does not require a specific clustering algorithm, we 

have used the k-means clustering algorithm to partition the data sets. Initial 

cluster centers are chosen by randomly selecting k feature vectors to serve as 

cluster centers. Each remaining object is then assigned to the nearest cluster 

(using Euclidean distance).  The centroid of each cluster is then computed and 

the process is repeated until there is no change in the cluster centers.  Our 

approach uses a k value of 2 to perform a binary search.  The advantage of 

binary search is that it is easy for the user to see differences in two clusters at a 

time and it produces a hierarchical representation of the clustered data. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 2. An example of how to compute a position weight matrix.  
 

 
We use a graph of the positional weight matrix to provide a visualization of 

the patterns of the entire genome and of the clusters produced.  The scientist 

uses this visualization to direct the clustering process.  Figure 3 shows an 
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example of a graph of the positional weight matrix of the 5’ flanking region of 

the genes of Sulfolobus solfataricus before clustering.  The beginning of the 

gene is taken as position 0.  Five’ flanking regions occur “upstream” from the 

beginning of the gene.  A window size is specified to encompass the region of 

interest to the scientist.  In this example, the window is -48 to -1.  Initially, two 

clusters of the initial set of sequences are produced.  A graph of the PWM of 

each of the resulting clusters is generated for examination by the user.  For each 

resulting cluster, the user has several choices:   

�� Apply the clustering algorithm again to one or both of the clusters 

�� Redefine the window size before clustering again 

�� Sort the sequences using domain knowledge before clustering 

�� Backtrack if the clustering did not add information. 

 

In the next section, we describe how these operations have been applied to 

cluster the 5’ flanking regions of the genes of Sulfolobus solfataricus. 
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Figure 3. Positional weight matrix of Sulfolobus solfataricus gene 5’ 

flanking sequences before clustering. 

TRANSCRIPTION AND TRANSLATION SEQUENCES IN ARCHAE 

Living organisms can be classified into three groups: prokaryotes, archaea, 

and eukaryotes. Prokaryotes include the bacteria and other primitive organisms 

that do not have nuclear membranes.  Archaea exhibit features of both 

prokaryotes and eukaryotes [11] and their position in evolutionary history has 

long been a subject of debate.   

Promoters are involved the initiation of transcription of the gene from DNA 

to mRNA and are sections of the DNA sequence located “upstream” from genes. 

Prokaryotes also often have a pattern called a Shine-Darlgarno (SD) sequence 

that is used as a ribosome binding site for the translation of mRNA to protein 

that is upstream from the start of the gene [13]. 

In  both prokaryotes and archaea some genes are transcribed together on one 

segment of mRNA [19]. This cluster of linked genes is called an operon. 
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Eukaryotes rarely have operons. Previous studies in archaea have shown that the 

first gene in an operon and single genes have a translation pattern similar to 

eukaryotes whereas the internal genes of operons have a translation pattern 

similar to prokaryotes [19, 23]. Graphs of the positional weight matrices of the 

5’ flanking region of the Sulfolobus solfataricus genome (Figure 3) exhibit a 

mixture of gene regulation patterns. We have used our interactive clustering 

approach to cluster the promoter regions of genes of several species of archaea 

into groups that exhibit different gene transcription initiation and translation 

initiation patterns. 

Results with the promoter region of the genome of S. solfataricus 

(downloaded from Genbank http://www.ncbi.nlm.nih) are presented as an 

example. 
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Figure 4  Clustering results of S. solfataricus promoter regions. 

CLUSTERING RESULTS 

We applied the interactive clustering approach using a window of -48 to -1 

for the first round of clustering to the total gene data set of S. solfataricus. 

Figure 4 shows the clustering results obtained using this approach.  Subsequent 

rounds of clustering sometimes used a different window and sometimes were 

applied to clusters that had been sorted into “nearby” and “distant” groups based 

on the proximity of neighboring genes. Dr. John Boyle directed the clustering 

process and “labeled” the resulting clusters.  Most patterns were consistent with 

previous studies. However, there is a small group of nearby genes (142) having 

both an “A box” and “G box” as illustrated in Figure 5.  This result has not been 

previously reported. 
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Figure 5 Positional weight matrices of the gene regulation patterns after 
clustering based on the promoter sequences of S. sulfotaricus. A. the cluster with 
A box; B. the cluster with G box; C. the cluster with weak A and G boxes. 

CONCLUSIONS 

In summary, we have developed an interactive gene clustering method 

based on positional weight matrices and the k-means clustering algorithm that 

allows scientists to visualize and control the clustering process. We have 

successfully separated the genes of S. solfataricus into two classes of genes with 

different patterns consistent with previous reports [19, 20, 22]. Our results also 

show a new pattern with both an A and G box that has not been previously 

reported.  This unique combination of translation and transcription initiation 

patterns requires further experimental investigation.  In the current study, we 

have used the simple k-means clustering algorithm.  The effectiveness of other 

clustering algorithms should also be investigated.  We have used the positional 
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weight matrix and Euclidean distance to measure similarity of feature vectors.  

Investigation of other representations and similarity measures is also planned.  

The approach that we describe is currently only partially automated.  We plan to 

build a web-based interface to fully automate the approach.   
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