
SOFTWARE Open Access

MapGL: inferring evolutionary gain and loss
of short genomic sequence features by
phylogenetic maximum parsimony
Adam G. Diehl1* and Alan P. Boyle1,2

* Correspondence: adadiehl@umich.
edu
1Department of Computational
Medicine and Bioinformatics,
University of Michigan, Ann Arbor,
MI, USA
Full list of author information is
available at the end of the article

Abstract

Background: Comparative genomics studies are growing in number partly because
of their unique ability to provide insight into shared and divergent biology between
species. Of particular interest is the use of phylogenetic methods to infer the
evolutionary history of cis-regulatory sequence features, which contribute strongly to
phenotypic divergence and are frequently gained and lost in eutherian genomes.
Understanding the mechanisms by which cis-regulatory element turnover generate
emergent phenotypes is crucial to our understanding of adaptive evolution.
Ancestral reconstruction methods can place species-specific cis-regulatory features in
their evolutionary context, thus increasing our understanding of the process of
regulatory sequence turnover. However, applying these methods to gain and loss of
cis-regulatory features historically required complex workflows, preventing
widespread adoption by the broad scientific community.

Results: MapGL simplifies phylogenetic inference of the evolutionary history of short
genomic sequence features by combining the necessary steps into a single piece of
software with a simple set of inputs and outputs. We show that MapGL can reliably
disambiguate the mechanisms underlying differential regulatory sequence content
across a broad range of phylogenetic topologies and evolutionary distances. Thus,
MapGL provides the necessary context to evaluate how genomic sequence gain and
loss contribute to species-specific divergence.

Conclusions: MapGL makes phylogenetic inference of species-specific sequence
gain and loss easy for both expert and non-expert users, making it a powerful tool
for gaining novel insights into genome evolution.

Keywords: Phylogenetic analysis, Genomics, Genome evolution, Regulatory
evolution, Genomic algorithms, Ancestral reconstruction

Background
Comparative genomics uses sequence-level differences between species to gain insights

into how genomes function and evolve [1]. According to Google Scholar, published

comparative genomics studies have increased every year since 2009. These studies rely

on the ability to detect and assign provenance to lineage-specific sequence variations
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at both the nucleotide level and at the level of larger-scale sequence insertions and de-

letions (indels). While species-specific indels are easily visible as gaps in pairwise align-

ments, gap presence alone tells us nothing about the underlying evolutionary processes

by which it was created. Further analyses are necessary to differentiate between species-

specific sequence insertions and loss of ancestral sequences. Understanding the mecha-

nisms driving sequence divergence and their relationships to natural selection requires

the ability to discern between these events. Ancestral reconstruction is a phylogenetic

method by which observed states in outgroup species are used to infer the state in the

most-recent common ancestor (MRCA) [2]. This inferred ancestral state can then be

used to predict the evolutionary events leading to an indel. These methods can place

indels in their proper evolutionary context, allowing much greater precision in hypoth-

esis generation regarding the causes, underlying mechanisms, and downstream effects

of sequence turnover.

However, ancestral reconstruction is a complex process and, while tools exist to re-

construct ancestral protein and DNA sequences [3–5] and ancestral genomes [6], no

published tool exists to infer evolutionary gain and loss of short genomic sequence fea-

tures. Doing so has historically relied on ad-hoc workflows involving multiple mapping

steps to target and outgroup genomes and subsequent analysis with a combination of

published genomics software and custom scripts (see [7] for example). While general

phylogenetic inference software, such as TNT [8] and POY [9], may be used to perform

the ancestral reconstruction steps of these pipelines, given a fixed phylogenetic tree,

their proper application requires a level of specialist knowledge that may be prohibitive

for the casual user. Furthermore, the complexity of these pipelines is exacerbated by

the need to use multiple outgroup species in order to ensure the reliability of inferences

[10], which comes at the cost of increased input and intermediate files, alignment and

post-processing steps, disk and memory usage, and overall analysis time. These limita-

tions represent a significant barrier to widespread application by the broad scientific

community. MapGL addresses this problem by combining all mapping and phylogen-

etic inference steps into a single program with simple inputs and easily interpreted

outputs.

Implementation
MapGL applies a simple phylogenetic inference approach based on Wagner parsimony

[11] to infer the evolutionary history of short genomic sequence features from a query

genome relative to a target genome (Fig. 1a). This approach seeks to minimize the

number of state-changes (i.e., sequence gains and losses) necessary to explain the pat-

tern of sequence presence/absence in a multiple-alignment of contemporary sequences.

Briefly, for each query feature, an initial mapping step to the target genome determines

whether an orthologous sequence exists. If so, the sequence is labeled as an ortholog

and written to output. Otherwise, the ancestral state is inferred by projecting observed

data from the query, target, and outgroup species onto a precomputed, fixed phylogeny

describing the evolutionary relationships between all present-day and ancestral species

(Fig. 1b). Ancestral state inference proceeds using an adaptation of Fitch’s Algorithm

[12], whereby the most-likely ancestral state is chosen to minimize the total number of

gain/loss events required to explain the pattern of sequence presence/absence in the

observed data [12] (Fig. 1c). Query sequences are first mapped to each outgroup and
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Fig. 1 (See legend on next page.)
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state labels recorded at the corresponding leaf nodes: “1” if an orthologous sequence

exists or “0” if not. Next, a post-order traversal is performed to infer states at all in-

ternal nodes, choosing the most-frequent state observed among child nodes, or storing

the union set of observed symbols in case of ties. The inferred state at the root node,

representing the MRCA, is then used to infer whether sequences were gained on the

branch leading to the query species (i.e., were absent in the MRCA) or lost on the

branch leading to the target species (i.e., were present in the MRCA) (Fig. 2a-b).

In cases where the root state cannot be resolved, we set the root state equal to the

unambiguous descendant state supported by the subtree with the most leaves. In the

case of a single terminal outgroup species, where the right subtree has only one leaf,

this is equivalent to pruning the most-terminal outgroup at the branch directly above

the root (Fig. 1d, Fig. 2c-d). When this fails, we choose the root state based on the

value of the –priority (−p) parameter that prioritizes sequence gain or loss. Setting this

to “gain” is equivalent to assigning a lower evolutionary cost to sequence insertions

compared to deletions. The root state will then default to “0” in ambiguous cases and

sequence presence in descendant nodes will be interpreted as sequence gain. Setting

this to “loss” will have the opposite effect. This behavior can be disabled via the –no_

prune (−n) option, in which case such sequences will be labeled as “ambiguous.” Op-

tionally, an additional pre-order tree traversal can be performed to infer and report all

branch(es) on which sequence gain/loss events occurred throughout the phylogeny.

MapGL takes as inputs a set of genomic query features in BED format, a set of lift-

over chains [13] corresponding to the target and outgroup species, and a Newick tree

describing the full phylogeny. The program is self-documenting and ships with a small

example dataset. MapGL can be tuned through several command-line options. The

(See figure on previous page.)
Fig. 1 The mapGL algorithm. a Schematic outline for the mapGL algorithm. After initialization, the
algorithm loops over query features, performing an initial mapping step against the target species. If the
feature maps to the target species, it is labelled as an ortholog and written to output. If not, it enters the
ancestral reconstruction stage. The feature is then mapped to each outgroup species in the full phylogeny
and the corresponding leaves are labelled to indicate presence or absence. Internal labels are inferred
based on the patterns observed at the leaf nodes (see Fig. 2). If the root state cannot be inferred
unambiguously, root state disambiguation is performed as shown in panel D. Gain and loss events can
then be inferred based on whether a feature is present at the root of the tree. The labelled feature is then
written to output. This process is repeated until all query features are labelled. b Full phylogenetic tree
describing evolutionary relationships between the query and target species (nodes 3 and 4) plus three
outgroups (nodes 6–8). Query, target, and outgroup species occupy the leaf nodes of the tree. These are
the only species for which we can directly observe sequence presence/absence. Internal nodes (0, 1, 2, and
5) represent ancestral species. c Since we cannot observe internal sequences directly, we must infer
sequence presence/absence based on present-day observations from the leaf species. The core step of the
ancestral reconstruction stage involves labelling all leaf nodes with their observed states and performing a
post-order tree traversal to infer the states at internal nodes following the principle of maximum-parsimony
(MP). The most-recent common ancestor (MRCA) occupies the root node (node 0), and the inferred state at
this node is returned and used to predict whether query-specific sequences were gained in the query
genome or lost from the target genome (see Fig. 2a-b) for example). (D) In cases when the root state
cannot be resolved, the root state is disambiguated following a simple decision tree. In the first step, the
larger of the left and right subtrees is chosen. If the state at the base of this tree is unambiguous, the root
state is set to the corresponding state. Otherwise, we check the state at the base of the opposite subtree. If
this node is not a leaf node and is labeled with an unambiguous state, we set the root state to the
corresponding state. If neither left nor right subtrees have an unambiguous root state, or if the only
unambiguous descendant node is a leaf node, the root state is chosen based on the –priority parameter. If
this is set to “gain,” the root state defaults to 0 (sequence absence). If it is set to “loss,” the root state
defaults to 1 (sequence presence)
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most important of these are –threshold (−t) and –gap (−g). The -t < FLOAT> option

specifies the amount of overlap required between query features and target chains,

expressed as the fraction of query nucleotides overlapping a target chain, to call a

match as a function of the query element length. The default value of 0.0 is equivalent

to requiring a single-base overlap while a value of 1 would enforce only full-length

alignments. The -g < INT> option specifies the tolerance for gaps and takes an integer

specifying the maximum tolerable gap length, in nucleotides, as its argument. The de-

fault value of −1 indicates that gaps of any length are allowed. The default values

maximize the algorithm’s ability to find orthologous sequences, making gain and loss

predictions very conservative. However, these values may lead to erroneous ortholog

predictions in cases where aligned features contain embedded indels, may be overly

conservative when comparing closely related genomes, and may lead to underpredic-

tion of sequence gains/losses in poorly aligned regions. Specifying a non-zero mapping

threshold and a gap tolerance near the average gap length in such regions may increase

the sensitivity of MapGL to detect gain and loss events, albeit at the expense of redu-

cing its sensitivity for orthologs. Nonetheless, as the prototypical use of this program is

Fig. 2 Example gain and loss inferences based on ancestral state reconstruction. a Example sequence loss
in the target species based on presence in the most-recent common ancestor (MRCA), at the root of the
tree. b Example sequence gain in the query species. Sequence absence is the most parsimonious inferred
ancestral state as it invokes two independent sequence gains rather than three independent losses
necessary to explain the observed data. d The phylogeny in C may be resolved by choosing an
unambiguous state from one of the two nodes directly above the root. In the case of the tree shown, this
is equivalent to pruning the outermost outgroup and rerooting the tree. The inferred ancestral state, then,
is presence of an orthologous sequence and sequence loss in the target species is called. e UCSC Genome
Browser track for a region in the human genome (hg19 build) labelled by MapGL as a human-specific gain.
The region contains a CTCF binding annotation residing in a primate-specific insertion of an L2a LINE
transposable element. f UCSC Genome Browser track for a region in the human genome labelled by
MapGL as a mouse-specific loss. This region also contains a CTCF binding site residing within an L2a LINE
element, but one that was inserted prior to divergence of Atlantogenata and Boreoeutheria species
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to identify whole sequence features that have undergone species-specific gain or loss,

the default values are likely reasonable for most users.

MapGL is free and open-sourced under the MIT License. It is based on bnMapper

[14], which maps genomic sequences across species based on liftover chains [13]. We

retained the core mapping steps from bnMapper with one modification: while bnMap-

per drops alignments that are split across chains, we keep the longest alignment among

all chains represented. This behavior can be controlled with the –drop_split (−d) op-

tion. We extended this framework by adding the ability to map against multiple liftover

chains to incorporate target and outgroup species and added the ancestral reconstruc-

tion steps outlined above. Tree parsing and phylogenetic methods were adapted from

the python-newick package (https://pypi.org/project/newick/). MapGL is compatible

with MacOS and most Unix-like operating systems, and is available for installation

through PyPI and Bioconda, with source code available from the GitHub repository

(https://github.com/adadiehl/mapGL).

We present three case studies spanning a wide variety of phylogenetic tree topologies

and evolutionary distances to establish the performance of MapGL. We obtained CTCF

binding locations in one of two query species: human and D. melanogaster. Human

data were compared to mouse, a distant target species, in the mammalian analysis (Fig.

S1A), and chimpanzee, a closely related target species, in the primate analysis (Fig.

S1C). D. melanogaster data were compared to D. simulans, which are roughly three

times more divergent than human and chimpanzee, in the invertebrate analysis (Fig.

S1E). Human CTCF data were originally analyzed as part of a study on the effects of

transposable element (TE) activity on CTCF binding site content in mammalian ge-

nomes [15]. In keeping with this, dog, horse, and elephant were chosen as outgroups to

yield phylogenetic tree that encompasses two major groups of mammals: Atlantogenata

and Boreoeutheria, spanning the primary activity periods for several TE types associ-

ated with CTCF binding (Fig. S1A). Methods for all three analyses are described in de-

tail within the Supplementary Methods.

Results
Results of the mammalian analysis show that roughly 1/3 of human CTCF binding sites

are not found in mouse, either as a result of human-specific gain or mouse-specific loss

(Fig. S1B). We show two representative examples in Fig. 2e-f, noting that that both

show the expected patterns of sequence presence/absence for their respective labels.

Importantly, these two predictions demonstrate how even sites with similar functional

annotations can have very different evolutionary origins. Although both these regions

contain human-specific CTCF binding sites derived from L2a retrotransposon inser-

tions, these insertions occurred at very distant points in evolutionary history. The

feature shown in in Fig. 2e originated from an L2a insertion that occurred after

primate-rodent divergence while the region in Fig. 2f originated from an L2a insertion

that occurred very early in placental mammal evolution, prior to the divergence of

Atlantogenata and Boreoeutheria, and was subsequently lost from the mouse genome.

Thus, MapGL can discern between elements with different evolutionary histories, lead-

ing to distinct interpretations regarding their roles in regulatory innovation.

Consistent with the relatively small evolutionary distance between human and chim-

panzee, we observed a substantially lower rate of turnover in CTCF binding sequence
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content in the primate analysis relative to the mammalian analysis (Fig. S1C). However,

the expected patterns of sequence presence/absence were still evident in multiple se-

quence alignments for gain and loss predictions (Fig. S2A-B). Likewise, the invertebrate

analysis yielded similar results. Interestingly, the level of CTCF binding turnover ob-

served in D. melanogaster compared to D. simulans (Fig. S1F) was very close to the rate

observed in comparison between human and chimpanzee (Fig. S1D) despite being

roughly threefold more divergent at the sequence level. This may result from strong se-

lection to maintain a compact genome, leading to a low tolerance for genomic inser-

tions [16]. Nonetheless, representative gain and loss predictions from D. melanogaster

exhibit the expected characteristics in multiple sequence alignments (Figs. S2C-D).

Conclusions
Comparative genomics relies on the ability to infer the creative mechanisms and down-

stream effects of lineage-specific sequence divergence. However, even sequences with

similar properties can have very different evolutionary histories. This ambiguity com-

promises our ability to determine how lineage-specific gain and loss of short sequence

features relates to conserved and divergent functions. Placing species-specific sequence

features in their proper evolutionary context enables a deeper understanding of func-

tional divergence but requires application of phylogenetic methods that have not been

previously integrated into a single piece of software. MapGL answers this need, opening

these methods to a much broader user base.

While query and target species will have generally been chosen prior to the decision

to apply MapGL, the choice of appropriate outgroups should also be considered care-

fully, as it is critical in optimizing the performance of MapGL. Thus, we offer some

general guidelines for outgroup selection. First, we recommend using a minimum of

two outgroups, while three or more is better. Because MapGL utilizes a known, fixed

phylogeny to describe species relationships, errors in the tree topology may lead to er-

roneous gain/loss inferences. Therefore, we advise choosing species for which a reliable

phylogeny is available. In order to ensure sufficient data to resolve between competing

gain/loss scenarios, the amount of evolutionary distance captured within the outgroup

subtree (i.e., the sum of the branch lengths connecting all leaves and internal nodes)

should equal or exceed the distance between the query/target clade. Likewise, to avoid

biasing gain/loss predictions toward either the query or target branch, the overall dis-

tance between the nearest outgroup and the root of the query/target clade should be at

least as long as the shorter of the query or target branch. Finally, the mechanisms in-

volved in creating indel sequences of interest should be considered as they may dictate

the evolutionary distances necessary to accurately resolve competing gain/loss scenar-

ios. For example, sequence turnover that occurs gradually, such as accumulation of

small indels over many generations, may require relatively distant outgroups for reliable

inference. By contrast, processes that occur within a relatively short evolutionary time-

span, such as individual transposon dispersal events, may be resolvable using more

closely related outgroups. It is also important to note that MapGL depends on the ac-

curacy of chain files used to determine sequence presence/absence in target and out-

group species. Intuitively, alignment errors can create erroneous gaps in alignment

chains, leading to erroneous gain/loss predictions. Since these errors are more
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prevalent in alignments between low-coverage/low-quality genome assemblies, these

metrics should be considered in selecting outgroup species.

Similarly, inferences within difficult-to-align regions, including simple sequence re-

peats and repetitive elements, may be of lesser quality than those elsewhere. In some

cases, difficult-to-align sequences may manifest themselves as regions with many appar-

ent substitutions and indels. As discussed in the Implementation section, predictive ac-

curacy within such regions may be improved through careful tuning of the –gap (−g)

and –threshold (−t) options. We note several use cases where it may be beneficial to

use non-default values for the -g and -t parameters, but this list is far from exhaustive:

1) comparisons between closely-related query and target species (e.g., human and

chimp); 2) labelling query sequences that fall within difficult-to-align regions with high

rates of alignment error; 3) classifying sequences created by indel processes prone to

creating multiple, closely-spaced indels; 4) maximizing the specificity of ortholog pre-

dictions at the expense of decreasing predictive accuracy for gain/loss events.

MapGL was designed to resolve the evolutionary histories of indels between a pair of

query and target species. Therefore, by design, its resolution in placing gain and loss

events in evolutionary time is inherently limited. While the program does not prohibit

intermediate species in the phylogeny, beyond providing additional data from which to

predict the ancestral state, their inclusion will not improve the temporal resolution or

quality of gain/loss predictions. However, we show that the current implementation of

MapGL performs well in the specific tasks for which it was designed and should be suf-

ficient for most anticipated use cases. We show that MapGL performs well over a wide

range of evolutionary distances and tree topologies in both mammalian and inverte-

brate datasets, establishing MapGL as a simple and robust method to infer the evolu-

tionary histories of short sequence features.

Availability and requirements

Project name: MapGL

Project home page: https://github.com/adadiehl/mapGL. (Python package available

through PyPi, and Bioconda)

Operating systems: MacOS, Linux

Programming language: Python

Other Requirements: None

License: MIT

Restrictions: None

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03742-9.

Additional file 1: Table S1. Datasets. Figure S1. Phylogenetic trees and gain/loss statistics for CTCF binding
sites in mammalian, primate, and invertebrate phylogenies. Figure S2. Representative gain and loss predictions
from the primate and invertebrate analyses.
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