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SUMMARY

Personalized medicine is expected to benefit from
combining genomic information with regular moni-
toring of physiological states by multiple high-
throughput methods. Here, we present an integrative
personal omics profile (iPOP), an analysis that
combines genomic, transcriptomic, proteomic, me-
tabolomic, and autoantibody profiles from a single
individual over a 14 month period. Our iPOP analysis
revealed various medical risks, including type 2
diabetes. It also uncovered extensive, dynamic
changes in diverse molecular components and
biological pathways across healthy and diseased
conditions. Extremely high-coverage genomic
and transcriptomic data, which provide the basis
of our iPOP, revealed extensive heteroallelic
changes during healthy and diseased states and an
unexpected RNA editing mechanism. This study
demonstrates that longitudinal iPOP can be used
to interpret healthy and diseased states by connect-
ing genomic information with additional dynamic
omics activity.
INTRODUCTION

Personalized medicine aims to assess medical risks, monitor,

diagnose and treat patients according to their specific genetic

composition and molecular phenotype. The advent of genome

sequencing and the analysis of physiological states has proven

to be powerful (Cancer Genome Atlas Research Network,

2011). However, its implementation for the analysis of otherwise

healthy individuals for estimation of disease risk and medical

interpretation is less clear. Much of the genome is difficult to

interpret and many complex diseases, such as diabetes, neuro-

logical disorders and cancer, likely involve a large number of

different genes and biological pathways (Ashley et al., 2010;

Grayson et al., 2011; Li et al., 2011), as well as environmental

contributors that can be difficult to assess. As such, the com-

bination of genomic information along with a detailed molecular

analysis of samples will be important for predicting, diagnosing

and treating diseases aswell as for understanding the onset, pro-

gression, and prevalence of disease states (Snyder et al., 2009).

Presently, healthy and diseased states are typically followed

using a limited number of assays that analyze a small number

of markers of distinct types. With the advancement of many

new technologies, it is now possible to analyze upward of 105

molecular constituents. For example, DNA microarrays have

allowed the subcategorization of lymphomas and gliomas
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(Mischel et al., 2003), and RNA sequencing (RNA-Seq) has

identified breast cancer transcript isoforms (Li et al., 2011; van

der Werf et al., 2007; Wu et al., 2010; Lapuk et al., 2010).

Although transcriptome and RNA splicing profiling are powerful

and convenient, they provide a partial portrait of an organism’s

physiological state. Transcriptomic data, when combined with

genomic, proteomic, and metabolomic data are expected to

provide a much deeper understanding of normal and diseased

states (Snyder et al., 2010). To date, comprehensive integrative

omics profiles have been limited and have not been applied to

the analysis of generally healthy individuals.

To obtain a better understanding of: (1) how to generate an

integrative personal omics profile (iPOP) and examine as many

biological components as possible, (2) how these components

change during healthy and diseased states, and (3) how this

information can be combined with genomic information to

estimate disease risk and gain new insights into diseased states,

we performed extensive omics profiling of blood components

from a generally healthy individual over a 14 month period

(24 months total when including time points with other molecular

analyses). We determined the whole-genome sequence (WGS)

of the subject, and together with transcriptomic, proteomic, me-

tabolomic, and autoantibody profiles, used this information to

generate an iPOP. We analyzed the iPOP of the individual over

the course of healthy states and two viral infections (Figure 1A).

Our results indicate that disease risk can be estimated by

a whole-genome sequence and by regularly monitoring health

states with iPOP disease onset may also be observed. The

wealth of information provided by detailed longitudinal iPOP re-

vealed unexpected molecular complexity, which exhibited

dynamic changes during healthy and diseased states, and

provided insight into multiple biological processes. Detailed

omics profiling coupled with genome sequencing can provide

molecular and physiological information of medical significance.

This approach can be generalized for personalized health moni-

toring and medicine.

RESULTS

Overview of Personal Omics Profiling
Our overall iPOP strategy was to: (1) determine the genome

sequence at high accuracy and evaluate disease risks, (2)

monitor omics components over time and integrate the relevant

omics information to assess the variation of physiological states,

and (3) examine in detail the expression of personal variants

at the level of RNA and protein to study molecular complexity

and dynamic changes in diseased states.

We performed iPOP on blood components (peripheral blood

mononuclear cells [PBMCs], plasma and sera that are highly

accessible) from a 54-year-old male volunteer over the course

of 14 months (IRB-8629). The samples used for iPOP were taken

over an interval of 401 days (days 0–400). In addition, a complete

medical exam plus laboratory and additional tests were per-

formed before the study officially launched (day 123) and blood

glucose was sampled multiple times after the comprehensive

omics profiling (days 401–602) (Figure 1A). Extensive sampling

was performed during two viral infections that occurred during

this period: a human rhinovirus (HRV) infection beginning on
1294 Cell 148, 1293–1307, March 16, 2012 ª2012 Elsevier Inc.
day 0 and a respiratory syncytial virus (RSV) infection starting

on day 289. A total of 20 time points were extensively analyzed

and a summary of the time course is indicated in Figure 1A.

The different types of analyses performed are summarized in

Figures 1B and 1C. These analyses, performed on PBMCs

and/or serum components, included WGS, complete transcrip-

tome analysis (providing information about the abundance of

alternative spliced isoforms, heteroallelic expression, and RNA

edits, as well as expression of miRNAs at selected time points),

proteomic and metabolomic analyses, and autoantibody

profiles. An integrative analysis of these data highlights dynamic

omics changes and provides rich information about healthy and

diseased phenotypes.

Whole-Genome Sequencing
We first generated a high quality genome sequence of this

individual using a variety of different technologies. Genomic

DNA was subjected to deep WGS using technologies from

Complete Genomics (CG, 35 nt paired end) and Illumina

(100 nt paired end) at 150- and 120-fold total coverage, respec-

tively, exome sequencing using three different technologies to

80- to 100-fold average coverage (see Extended Experimental

Procedures available online) and analysis using genotyping

arrays and RNA sequencing.

The vast majority of genomic sequences (91%) mapped to the

hg19 (GRCh37) reference genome. However, because of the

depth of our sequencing, we were able to identify sequences

not present in the reference sequence. Assembly of the

unmapped Illumina sequencing reads (60,434,531, 9% of the

total) resulted in 1,425 (of 29,751) contigs (spanning 26Mb) over-

lapping with RefSeq gene sequences that were not annotated in

the hg19 reference genome. The remaining sequences appeared

unique, including 2,919 exons expressed in the RNA-Seq data

(e.g., Figure S1A). These results confirm that a large number of

undocumented genetic regions exist in individual human

genome sequences and can be identified by very deep

sequencing and de novo assembly (Li et al., 2010).

Our analysis detected many single nucleotide variants (SNVs),

small insertions and deletions (indels) and structural variants

(SVs; large insertions, deletions, and inversions relative to

hg19), (summarized in Table 1 and Experimental Procedures).

134,341 (4.1%) high-confidence SNVs are not present in

dbSNP, indicating that they are very rare or private to the

subject. Only 302 high-confidence indels reside within RefSeq

protein coding exons and exhibit enrichments in multiples of

three nucleotides (p < 0.0001). In addition to indels, 2,566

high-confidence SVs were identified (Experimental Procedures

and Table S1) and 8,646 mobile element insertions were identi-

fied (Stewart et al., 2011).

Analysis of the subject’s mother’s genome by comprehensive

genome sequencing (as above) and imputation allowed a

maternal/paternal chromosomal phasing of 92.5% of the

subject’s SNVs and indels (see Extended Experimental Proce-

dures for details). Of 1,162 compound heterozygous mutations

in genes, 139 contain predicted compound heterozygous

deleterious and/or nonsense mutations. Phasing enabled the

assembly of a personal genome sequence of very high confi-

dence (c.f., Rozowsky et al., 2011).



A B

C

Figure 1. Summary of Study

(A) Time course summary. The subject wasmonitored for a total of 726 days, during which there were two infections (red bar, HRV; green bar, RSV). The black bar

indicates the period when the subject: (1) increased exercise, (2) ingested 81 mg of acetylsalicylic acid and ibuprofen tablets each day (the latter only during the

first 6 weeks of this period), and (3) substantially reduced sugar intake. Blue numbers indicate fasted time points.

(B) iPOP experimental design indicating the tissues and analyses involved in this study.

(C) Circos (Krzywinski et al., 2009) plot summarizing iPOP. From outer to inner rings: chromosome ideogram; genomic data (pale blue ring), structural variants >

50 bp (deletions [blue tiles], duplications [red tiles]), indels (green triangles); transcriptomic data (yellow ring), expression ratio of HRV infection to healthy states;

proteomic data (light purple ring), ratio of protein levels during HRV infection to healthy states; transcriptomic data (yellow ring), differential heteroallelic

expression ratio of alternative allele to reference allele for missense and synonymous variants (purple dots) and candidate RNAmissense and synonymous edits

(red triangles, purple dots, orange triangles and green dots, respectively).

See also Figure S1.
WGS-Based Disease Risk Evaluation
We identified variants likely to be associated with increased

susceptibility to disease (Dewey et al., 2011). The list of high

confidence SNVs and indels was analyzed for rare alleles (<5%

of the major allele frequency in Europeans) and for changes in

genes with knownMendelian disease phenotypes (data summa-

rized in Table 2), revealing that 51 and 4 of the rare coding SNV

and indels, respectively, in genes present in OMIM are predicted
to lead to loss-of-function (Table S2A). This list of genes was

further examined for medical relevance (Table S2A; example

alleles are summarized in Figure 2A), and 11 were validated by

Sanger sequencing. High interest genes include: (1) a mutation

(E366K) in the SERPINA1 gene previously known in the subject,

(2) a damaging mutation in TERT, associated with acquired

aplastic anemia (Yamaguchi et al., 2005), and (3) variants asso-

ciated with hypertriglyceridemia and diabetes, such as GCKR
Cell 148, 1293–1307, March 16, 2012 ª2012 Elsevier Inc. 1295



Table 1. Summary and Breakdown of DNA Variants

Type Total Variants Total High Confidence Heterozygous High Confidence Homozygous High Confidence

Total SNVs 3,739,701 3,301,521 1,971,629 1,329,892

Total gene-associated SNVs 1,312,780 1,183,847 717,485 466,362

Total coding/UTR 49,017 44,542 27,383 17,159

Missense 10,592 9,683 5,944 3,739

Nonsense 83 73 49 24

Synonymous 11,459 10,864 6,747 4,117

50UTR 4,085 2,978 1,802 1,176

30UTR 22,798 20,944 12,841 8,103

Intron 1,263,763 1,139,305 690,102 449,203

Ts/Tv — 2.14 — —

dbSNP 3,493,748 3,167,180 — —

Candidate private SNV 245,953 134,341 — —

Indels (�107� +36 bp) 1,022,901 216,776 — —

Coding 3,263 302 — —

Structural variants (>50 bp) 44,781 2,566 — —

In 1000G projecta 4,434 1,967 — —

High confidence values are from variants identified across multiple platforms (Illumina and CG) and/or Exome and RNA-Seq data. Annotations were

based from variant call formatted (vcf) files for heterozygous calls: 0/1, reference (ref)/alternative (alt); 1/2, alt/alt and homozygous calls; 1/1, alt/alt; 1/,

(alt/alt-incomplete call). Polyphen-2 was used to identify the location of the SNVs.
a1000G (1000 Genomes Project Consortium, 2010).
(homozygous) (Vaxillaire et al., 2008), and KCNJ11 (homozy-

gous) (Hani et al., 1998) and TCF7 (heterozygous) (Erlich et al.,

2009).

Genetic disease risks were also assessed by the RiskOGram

algorithm, which integrates information from multiple alleles

associated with disease risk (Ashley et al., 2010) (Figure 2B).

This analysis revealed a modest elevated risk for coronary artery

disease and significantly elevated risk levels of basal cell carci-

noma (Figure 2B), hypertriglyceridemia, and type 2 diabetes

(T2D) (Figures 2B and 2C).

In addition to coding region variants we also analyzed genomic

variants that may affect regulatory elements (transcription

factors [TF]), which had not been attempted previously (Data

S1). A total of 14,922 (of 234,980) SNVs lie in the motifs of 36

TFs known to be associated with the binding data (see Experi-

mental Procedures), indicating that these are likely having a

direct effect on TF binding. Comparison of SNPs that alter

binding patterns of NFkB and Pol II sites (Kasowski et al.,

2010), also revealed a number of other interesting regulatory

variants, some of which are associated with human disease

(e.g., EDIL) (Sun et al., 2010) (Figure S1B).

Medical Phenotypes Monitoring
Based on the above analysis of medically relevant variants and

the RiskOGram, we monitored markers associated with high-

risk disease phenotypes and performed additional medically

relevant assays.

Monitoring of glucose levels and HbA1c revealed the onset of

T2D as diagnosed by the subject’s physician (day 369, Figures

2A and 2C). The subject lacked many known factors associated

with diabetes (nonsmoker; BMI = 23.9 and 21.7 on day 0 and day

511, respectively) and glucose levels were normal for the first
1296 Cell 148, 1293–1307, March 16, 2012 ª2012 Elsevier Inc.
part of the study. However, glucose levels elevated shortly after

the RSV infection (after day 301) extending for several months

(Figure 2D). High levels of glucose were further confirmed using

glycated HbA1c measurements at two time points (days 329,

369) during this period (6.4% and 6.7%, respectively). After

a dramatic change in diet, exercise and ingestion of low doses

of acetylsalicylic acid a gradual decrease in glucose (to

�93 mg/dl at day 602) and HbA1c levels to 4.7% was observed.

Insulin resistance was not evident at day 322. The patient was

negative for anti-GAD and anti-islet antibodies, and insulin levels

correlatedwell with the fasted and nonfasted states (Figure S2C),

consistent with T2D. These results indicate that a genome

sequence can be used to estimate disease risk in a healthy indi-

vidual, and by monitoring traits associated with that disease,

disease markers can be detected and the phenotype treated.

The subject contained a TERTmutation previously associated

with aplastic anemia (Yamaguchi et al., 2005). However, mea-

surements of telomere length suggested little or no decrease in

telomere length and modest increase in numbers of cells with

short telomeres relative to age-matched controls (Figures S2A

and S2B). Importantly, the patient and his 83-year-old mother

share the same mutation but neither exhibit symptoms of aplas-

tic anemia, indicating that this mutation does not always result in

disease and is likely context specific in its effects.

Consistent with the elevated hypertriglyceridemia risk, triglyc-

erides were found to be high (321 mg/dl) at the beginning of the

study. These levels were reduced (81–116 mg/dl) after regularly

taking simvastatin (20 mg/day).

We also examined the variants for their potential effects on

drug response (see Extended Experimental Procedures). Among

the alleles of interest, (Figure 2A and Table S2B) two genotypes

affecting the LPIN1 and SLC22A1 genes were associated with



Table 2. Summary of Disease-Related Rare Variants

Category Count

Total high confidence rare SNVs 289,989

Coding 2,546

Missense 1,320

Synonymous 1,214

Nonsense 11

Nonstop 1

Damaging or possibly damaging 233

Putative loss-of-function SNVsa 51

Total high confidence rare indels 51,248

Coding indels 61

Frameshift indels 27

miRNA indels 3

miRNA target sequence indels 5

Putative loss-of-function indelsa 4
aIn curated Mendelian disease genes.
favorable (glucose lowering) responses to two diabetic drugs, ro-

siglitazone and metformin, respectively.

We followed the levels of 51cytokinesalongwith theC-reactive

protein (CRP) using ELISA assays, which revealed strong induc-

tion of proinflammatory cytokines and CRP during each infection

(Figures 2E and 2F). We also observed a spike of many cytokines

at day 12 after the RSV infection (day 301 overall). These data

define the physiological states and serve as a valuable reference

for the omic profiles integrated into a longitudinal map of healthy

and diseased states described in the next sections.

We also profiled autoantibodies during the HRV infection.

Plasma and serum samples from the first four time points

(days �123, 0, 4 and 21), along with plasma samples from 34

healthy controls were used to probe a protein microarray con-

taining 9,483 unique human proteins spotted in duplicate. A total

of 884 antigens with increased reactivity (Data S2) in the candi-

date plasma relative to healthy controls were found (p < 0.01,

Benjamini-Hochberg p < 0.01). Among the potentially interesting

results was high reactivity with DOK6, an insulin receptor binding

protein (NCBI gene database). These results demonstrate that

autoantibodies can be monitored and that information relevant

to disease conditions can be found.

Dynamic Omics Analysis: Integrative Omics Profiling
of Molecular Responses
We profiled the levels of transcripts, proteins, and metabolites

across the HRV and RSV infections and healthy states using

a variety of approaches. RNA-Seq of 20 time points generated

over 2.67 billion uniquely mapped 101b paired-end reads

(123 million reads average per time point) and allowed for an

analysis of the molecular complexity of the transcriptome in

normal cells (PBMCs) at an unprecedented level. The relative

levels of 6,280 proteins were also measured at 14 time points

through differential labeling of samples using isobaric tandem

mass tags (TMT), followed by liquid chromatography and mass

spectrometry (LC-MS/MS) (Cox and Mann, 2010; Theodoridis
et al., 2011). A total of 3,731 PBMC proteins could be consis-

tently monitored across most of the 14 time points (see Fig-

ure S3A and Data S3). In addition, 6,862 and 4,228 metabolite

peaks were identified for the HRV and RSV infection, and a total

of 1,020 metabolites were tracked for both infections (see Fig-

ure S4 and Data S4, [3]). Finally, as described below, we also

analyzed miRNAs during the HRV infection.

This wealth of omics information allowed us to examine

detailed dynamic trends related directly to the physiological

states of the individual and revealed enormous changes in

biological processes that occurred during healthy and diseased

states. For each profile (transcriptome, proteome, metabolome),

we systematically searched for two types of nonrandom

patterns: (1) correlated patterns over time and (2) single unusual

events (i.e., spikes that may occur at any given time point defined

as statistically significantly high or low signal instances com-

pared to what would be expected by chance). To perform this

analysis, we developed a general scheme for integrated analysis

of data (see Figure S5 and Extended Experimental Procedures

for further details). We used a Fourier spectral analysis approach

that both normalizes the various omics data on equal basis for

identifying the common trends and features, and, also accounts

for data set variability, uneven sampling, and data gaps, in order

to detect real-time changes in any kind of omics activity at

the differential time points (see Supplemental Information).

Autocorrelations were calculated to assess nonrandomness

of the time-series (p < 0.05 one-tailed based on simulated

bootstrap nonparametric distribution by sampling with replace-

ment of the original data, n > 100,000), with significant signals

classified as autocorrelated (I). The remaining datawas searched

for spike events, which were classified as spike maxima (II)

or spike minima (III) (p < 0.05 one-tailed based on differences

from simulated, n > 100,000 random distribution of the time-

series). After classification, the datawere agglomerated into hier-

archical clusters (using correlation distance and average linkage)

of common patterns and biological relevance was assessed

through GO (Ashburner et al., 2000) analysis (Cytoscape [Smoot

et al., 2011], BiNGO [Maere et al., 2005] p < 0.05, Benjamini-

Hochberg [Benjamini and Hochberg, 1995] adjusted p < 0.05)

and pathway analysis (Reactome [Croft et al., 2011] functional

interaction [FI], networks including KEGG [Kanehisa and Goto,

2000; Smoot et al., 2011], p < 0.05, FDR < 0.05). The unified

framework approach was implemented on all the different data

sets both individually and in combination, and our results

revealed a number of differential changes that occurred both

during infectious states and the varying glucose states.

We first analyzed the different individual transcriptome, pro-

teome (serum and PBMC) and metabolome data sets; the

proteome and metabolome results are presented in the Supple-

mental Information (Figures S3, S4, S6 and Data S3–S6). A total

of 19,714 distinct transcript isoforms (Wang et al., 2008) corre-

sponding to 12,659 genes (Figure S1C) were tracked for the

entire time course, and their dynamic expression response

was classified into either autocorrelated (I) and spike sets, further

subdivided as displayingmaxima (II) or minima (III) (Figure 3). The

clustering and enrichment analysis displayed a number of

interesting pathways in each class. In the autocorrelated group

(Figure 3B, [I]; see also Figure S6A and Data S6, [1 and 2]), we
Cell 148, 1293–1307, March 16, 2012 ª2012 Elsevier Inc. 1297
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Figure 2. Medical Findings

(A) High interest disease- and drug-related variants in the subject’s genome.

(B) RiskGraph of the top 20 diseases with the highest posttest probabilities. For each disease, the arrow represents the pretest probability according to the

subject’s age, gender, and ethnicity. The line represents the posttest probability after incorporating the subject’s genome sequence. Listed to the right are the

numbers of independent disease-associated SNVs used to calculate the subject’s posttest probability.

(C) RiskOGram of type 2 diabetes. The RiskOGram illustrates how the subject’s posttest probability of T2D was calculated using 28 independent SNVs. The

middle graph displays the posttest probability. The left side shows the associated genes, SNVs, and the subject’s genotypes. The right side shows the likelihood

ratio (LR), number of studies, cohort sizes, and the posttest probability.

(D) Blood glucose trend. Measurements were taken from samples analyzed at either nonfasted or fasted states; the nonfasted states (all but days 186,

322, 329, and 369 and after day 400) were at a fixed time after a constant meal. Data was presented as moving average with a window of 15 days. Red

1298 Cell 148, 1293–1307, March 16, 2012 ª2012 Elsevier Inc.



found two main trends: an upward trend (2,023 genes), following

the onset of the RSV infection, and a similar coincidental

downward trend (2,207 genes). The upward autocorrelated

trend revealed a number of pathways as enriched (p < 0.002,

FDR < 0.05), including protein metabolism and influenza life

cycle. Additionally, the downward autocorrelation cluster

showed a multitude of enriched pathways (p < 0.008, FDR <

0.05), such as TCR signaling in naive CD4+ T cells, lysosome,

B cell signaling, androgen regulation, and of particular interest,

insulin signaling/response pathways. These different pathways,

which are activated as a response to an immune infection, often

share common genes and additionally we observe many genes

hitherto unknown to be involved in these pathways but display-

ing the same trend. Furthermore, we observed that the down-

ward trend, that began with the onset of the RSV infection and

appeared to accelerate after day 307, coincided with the begin-

ning of the observed elevated glucose levels in the subject.

In the dynamic spike class we again saw patterns that were

concordant with phenotypes (Figure 3B, [II] and [III]; see also

Figure S6A and Data S6, [3–14]). A set of expression spikes

displaying maxima (547 genes), that are common to the onset

of both the RSV and HRV infections are associated with phago-

some, immune processes and phagocytosis, (p < 1 3 10�4,

FDR < 63 10�3). Furthermore, a cluster that exhibits an elevated

spike at the onset of the RSV infection involves the major histo-

compatibility genes (p < 73 10�4, Benjamini-Hochberg adjusted

p < 0.03). A large number of genes with a coexpression pattern

common to both infections in the time course have yet to be

implicated in known pathways and provide possible connections

related to immune response. Finally, our spike class displaying

minima showed a distinct cluster (1,535 genes) singular to day

307 (day 14 of the RSV infection), associated with TCR signaling

again, TGF receptors, and T cell and insulin signaling pathways

(p < 0.02, FDR < 0.03). Overall, the transcriptome analysis

captures the dynamic response of the body responding to infec-

tion as also evidenced by our cytokine measurements, and also

can monitor health changes over long periods of time, with

various trends.

To further leverage the transcriptome and genome data, we

performed an integrated analysis of transcriptome, proteomic

and metabolomics data for each time point, observing how this

corresponded to the varying physiological states monitored as

described in the above sections. Because of the availability of

many time points through the course of infection, we examined

in detail the onset of the RSV infection, as well as extended our

complete dynamics omics profile during the times that our

subject began exhibiting high glucose levels. Figure 4 shows

an integrated interpretation of omics data (see also Figure S6B

and Data S7), where all trends are combined for each omics

data set and the common patterns emerge providing comple-

mentary information. In addition to the common patterns
and green arrows and bars indicate the times of the HRV and RSV infectio

changes.

(E) C-reactive protein trend line. Error bars represent standard deviation of three

(F) Serum cytokine profiles. Red box and day number, HRV infection; green box

cating an unknown event at day 301. Red is increased cytokine levels.

See also Figure S2.
observed in our transcriptome analysis, new patterns emerged,

some unique to protein data, some to metabolite, and some

common to all. In particular we found the following interesting

results: for autocorrelated clusters we found the same trends

as observed in the transcriptome, additionally augmented

with concordant protein expressions. Pathways such as the

phagosome, lysosome, protein processing in endoplasmic retic-

ulum, and insulin pathways emerged as significantly enriched

(p < 0.002, FDR < 0.0075), and showed a downward trend post-

infection, and further accelerated after �3 weeks following the

initial onset of the RSV infection (this cluster comprised of

1,452 transcriptomic and 69 proteomic components, corre-

sponding to 1,444 genes). The elevated spike class showed a

maxima cluster on day 18 post RSV infection (one time point

after the cytokine maximum), with enrichment in pathways

such as the spliceosome, glucose regulation of insulin secretion,

and various pathways related to a stress response (p < 13 10�4,

FDR < 0.02)—this cluster included 1,956 transcriptomic, 571

proteomic and 23 metabolomic components, corresponding to

2,344 genes. Even though current proteomic information is

more limited than the full transcriptome because it follows fewer

components, as evidenced in Figure 4 (II), several pathways,

including the glucose regulation of insulin secretion pathway,

clearly emerge from the proteomic information and would not

have been observed by only monitoring the transcriptome.

Additionally, in this cluster we find significant GO enrichment in

splicing and metabolic processes (p < 6 3 10�47, Benjamini-

Hochberg adjusted p < 10�45). Furthermore, inspection of

metabolites reveals 23 that show the same exact trend (i.e.,

spikes at day 18 post RSV infection); at least one, lauric acid

has been implicated in fatty acid metabolism and insulin regula-

tory pathways (Kusunoki et al., 2007). Finally, we observeminima

spikes as well, with yet another interesting group on day 18,

which showed downregulation in several pathways (p < 0.003,

FDR < 0.05), such as the formation of platelet plug. This cluster

displayed a high degree of synergy between the various omics

data, comprised of 3,237 transcriptomic and 761 proteomic

components corresponding 3,400 genes and 83 metabolomic

components.

In summary, our integrated approach revealed a clear

systemic response to the RSV infection following its onset and

postinfection response, including a pronounced response

evident at day 18 post RSV infection. A variety of infection/stress

response related pathways were affected along with those

associated to the high glucose levels in the later time points,

including insulin response pathways.

Dynamic Omics Analysis: Extensive Heteroallelic
Variation and RNA Editing
The considerable amount of transcriptome and proteome data

allowed us to analyze and follow changes in allele-specific
ns, respectively. Black arrows and bars indicate the period with life style

assays.

and day number, RSV infection; question mark, elevated cytokine levels indi-
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Figure 3. Transcriptome Time Course Analysis

(A) Summary of approach for identification of differentially expressed components. The various omics sets were processed through a common framework

involving spectral analysis, clustering, and pathway enrichment analysis.

(B) Pattern classification. The different emergent patterns from the analysis of the transcriptome for the entire time course are displayed for the autocorrelation (I),

spikemaxima (II), and spikeminima (III) classes. For different clusters, examples of gene connections in selected pathways based onReactome (Croft et al., 2011)

FI (Cytoscape plugin [Smoot et al., 2011]) are shown as networks. Example GO (Ashburner et al., 2000) enrichment analysis results from Cytoscape (Smoot et al.,

2011) BiNGO (Maere et al., 2005) plugin and pathway enrichment results (Reactome FI [Croft et al., 2011]) are included.

See also Figures S5 and S6.
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expression (ASE), splicing, and editing at the RNA and protein

levels during healthy and diseased states.

Of the 49,017 genomic variants associated with coding or

UTR regions (Table 1), 12,785 (26%) were expressed in PBMCs

(R40 read coverage; Table S3). A total of 8,509 of the variants

are heterozygous (1,113 missense) and the remainder (4,686;

684 missense) are homozygous. Eight of the 83 nonsense muta-

tions were expressed indicating that not all nonsense mutations

result in transcript loss.

The numerous heterozygous variants allowed an analysis of

the dynamics of differential ASE, (shrunk ratios, Experimental

Procedures; Figures 5A and S7B) in PBMCs during healthy and

diseased states. We found 497 and 1,047 genes that exhibited

differential ASE during HRV and RSV infection, respectively

(posterior probabilityR 0.75, beta-binomial model;R 40 reads,

R 7 time points); many of these are immune response genes,

e.g., PADI4 and PLOD1 (Figure 5B). Among the differential ASE

sites 100 and 218 were specific to HRV and RSV infected states,

respectively (Figures 5C and 5D). Differential ASE genes in the

HRV compared to healthy phase were enriched for those encod-

ing SNARE vesicular transport proteins (DAVID analysis; Benja-

mini p < 0.05). Summing over all computed ASE alternative to

total ratios revealed that nonreference heteroallelic variants

were expressed at 98% of reference variants. The expression

of over 50 heterozygous variants, including some of the rare/

private SNVs (which form 0.72%of the genomic total), and differ-

entially expressed variants (SVIL and TRIM5), was confirmed by

Sanger cDNA sequencing and/or digital PCR (Hindson et al.,

2011) of cDNA (Figures 5B and S7). Overall, these results

demonstrate that differential ASE is pervasive in humans and is

particularly distinct during healthy and infected states, with

many of these changes residing in immune response genes.

The depth of our RNA-Seq data enabled us to re-evaluate

the extent of RNA editing (Figure 6 and Data S8 and S11A),

typically an adenosine to inosine (A-to-I) conversion (Li et al.,

2009b) or infrequently cytidine to uridine (C-to-U), in normal

human cells. We found 2,376 high-confidence coding-associ-

ated RNA edits, including 795 A-to-I (A-to-G) and 277 C-to-U

deamination-like edits (Figure 6A). A total of 587 edits in 175

genes were predicted to cause amino acid substitutions

(Polyphen-2 [Adzhubei et al., 2010]); the remainder were non-

sense (11), synonymous (435), or located in 50/30 UTRs (103/

1,240). Ten edited bases causing amino acid substitutions

were validated by Sanger cDNA sequencing and/or digital

droplet PCR, as well as by identification of their peptide counter-

parts by mass spectrometry (Figure 6B). Interestingly, we identi-

fied A-to-G edits (Figure 6B), e.g., IGFBP7,BLCAP, andAZIN1 in

PBMCs that were known to occur in other tissues (Gommans

et al., 2008; Levanon et al., 2005), indicating that the same

RNA can be edited in other cell types. BLCAP exhibited two

edited changes (Figure 6C) with edited/total ratios of 0.12–0.2

and 0.18–0.31, respectively, comparable to the 0.21 ratio previ-

ously observed in the brain (Galeano et al., 2010).

Furthermore, we found and validated two missense-causing

edits, U-to-C in SCFD2 and G-to-A in FBXO25 (Figure 6D), indi-

cating an amination-like RNA-editing mechanism, previously not

observed in human cells. Our results reveal that a large number

of edits occur and exhibit dynamic and differential changes in
populations of PBMCs (Figure 6B). The total number of edited

RNAs, while extensive, is significantly lower than that reported

in human lymphoblastoid lines and very different in its distribu-

tion (Li et al., 2011). We believe that in addition to tissue-specific

variation, the observed differences are also likely due to overcall-

ing of false-positive SNVs, a problem we corrected with deep

exome sequencing, removal of repeat regions and pseudo-

genes, and strings of close-proximity variants (Data S11A).

Finally, to determine whether the nonreference allele and edi-

ted RNAs serve as templates for protein synthesis, we generated

proteome databases for 4,586 missense SNVs and all 30,385

edits and used them to search our mass spectra from the untar-

geted protein profiling experiments as well as in a targeted

approach to directly search for 500 edited proteins (see

Extended Experimental Procedures). Peptides for 48 SNVs and

51 edits were identified (FDR < 0.01 and requiring one unique

peptide per protein; Data S9 and S11B). A total of 17/17 selected

SNVs (100%) were validated by Sanger sequencing. Seven

peptides derived from the SNV and six peptides derived from

edited transcripts were unique to a single protein in the IPI data-

base (Kersey et al., 2004) and classified as high confidence.

These results indicate that a large fraction of personal variants

are expressed as transcripts and a number of these are also

translated as proteins.

miRNA Variant Analysis
In addition to the omics profiling above, we identified 619–681

known miRNAs from PBMCs per time point (>10 reads, days

4, 21, 116, 185, and 186), 106 of which showed dynamic

changes (e.g., Figures S2D and S2E). Examination of miRNA

editing revealed 50 edited miRNAs (C-to-U or A-to-I) with strin-

gent criteria (edited reads > 5% of total reads or > 399 modified

reads) indicating that at least �4% of expressed miRNAs are

potentially edited. Eighteen miRNAs contain edits located within

the functionally critical ‘‘seed sequences,’’ potentially affecting

their mRNA targets. Interestingly, expression of SNV-containing

miRNAs was generally higher compared to SNV-free miRNA

(Figures 6E and 6F). In addition to edits, analysis of the SNVs

located in miRNAs revealed that most (25 of 31) SNV-containing

miRNAs were not expressed. These miRNAs were among those

discovered in cancer cell lines (Jima et al., 2010) and may not

normally be highly expressed in PBMCs from healthy

individuals.

DISCUSSION

To our knowledge, our study is the first to perform extensive

personal iPOP of an individual through healthy and diseased

states. It revealed extensive complex and dynamic changes in

the omics profiles, especially in the transcriptomes, between

healthy states and viral infections, and between nondiabetic

and diabetic states. iPOP provides a multidimensional view of

medical states, including healthy states, response to viral infec-

tion, recovery, and T2D onset. Our study indicates that disease

risk can be assessed from a genome sequence and illustrates

how traits associated with disease can be monitored to identify

varying physiological stages. We show that large numbers of

molecular components are present in blood samples and can
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Figure 5. Heteroallelic Expression Study of PBMCs

(A) Frequency of allele-specific expression (ASE) based on shrunk alternative/total ratios of RNA-Seq data. A total of 143 positions fall outside the three standard

deviations (s) range (see Figure S7B; <0.33, >0.66), suggesting that certain heterozygous alleles (DNA level) are preferentially expressed in PBMCs. Standard

deviations (s) are denoted with dotted lines and the average ratio overlapping across all time points is 0.49.

(B) Digital droplet PCR validation of two heteroallelic expressed genes PADI4 and PLOD (relative to alternative allele).

(C) Heat map of the HRV infection time course (seven time points) showing differential ASE during HRV infection day 0 (red arrow) relative to average shrunk ratios

of healthy states (days 116–255).

(D) Heat map of the RSV infection time course (13 time points) showing differential ASE specific to RSV infection day 289 (red arrow) relative to average shrunk

ratios of healthy states (days 311–400), onset of high glucose on day 307 is also shown (red arrow). Heat map ratios are relative to the alternative allele (alternative/

total, posterior probability >0.75). Example of enriched KEGG pathway gene cluster (Huang et al., 2009; Benjamini p < 0.05) shown below Figure 5C.

See also Figure S7 and Data S11A.
be measured (>3 billion measurements taken over 20 time

points). For the transcriptome many of these arise from differen-

tial splicing, ASE, and editing events. By observing dynamic

molecular changes that correspond to physiological states,

this proof-of-principle study offers a pilot implementation of

personalized medicine. The information obtained may greatly

help in the design and application of personalized health moni-

toring, diagnosis, prognosis, and treatment.
Figure 4. Integrated Omics Analysis

For days 186–400, the different emergent patterns from an integrated analysis

autocorrelation (I), spike maxima (II), and spike minima (III) classes. For differe

Reactome (Croft et al., 2011) and FI Cytoscape (Smoot et al., 2011) plugin are sh

transcriptome data or both. Example GO (Ashburner et al., 2000) enrichment an

plugin and pathway enrichment results (Reactome FI [Croft et al., 2011]) are incl

See also Figures S4–S6.
We speculate that differential expression of ASE/edits

may be important in monitoring and assessing diseased

states. In this respect the genes/proteins in which one isoform

is abundant in one condition (e.g., diseased or healthy state)

whereas another is abundant in another (e.g., diseased state)

may provide unique physiological advantages to the in-

dividual in distinct environmental conditions. Because multiple

genes in our study that exhibit ASE and editing changes are
of the transcriptome, proteome, and metabolome data are displayed for the

nt clusters, examples of gene connections in selected pathways based on

own as networks, with constituents marked as assessed from proteome data,

alysis results from Cytoscape (Smoot et al., 2011) BiNGO (Maere et al., 2005)

uded.
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Figure 6. RNA Editing and miRNA Expression of PBMCs

(A) Distribution of candidate RNA editing types in missense (red) and synonymous and UTRs (blue), based on seven or more time points (total 20 time points).

(B) Selected summary of known and novel RNA edits expressed in PBMCs. RNA edits were validated by digital PCR (green) and proteomic mass spectrometry

(yellow).

(C) Detail of twomissense-causing edit sites inBLCAP. Selected data fromRNA-Seq at day 4 and day 255 (top left), Sanger sequencing of day 255 cDNA (bottom

left), and digital PCR (right panel) are shown.

(D) Digital droplet PCR analysis of novel edit sites in SCFD2 (left) and FBXO25 (right) genes show no variants in DNA, whereas in RNA, editing is evident (top left

quadrant).

(E andF)ExpressionofSNV-containingandSNV-freemiRNA, respectively, for days4, 21, 116, 185, and186.Red lines,mean; errorbars, standarderrorof themean.

Genome browsers, chromatograms, and digital PCR data were analyzed with software from DNAnexus, Inc., Chromas 2.33, and QuantaLife, respectively.

See also Figure S7 and Data S8 and S11A and S11B.
involved in immune function, we speculate that these com-

ponents are particularly valuable for mediating immune re-

sponses to environmental conditions such as exposure to
1304 Cell 148, 1293–1307, March 16, 2012 ª2012 Elsevier Inc.
pathogens. Likewise miRNA SNVs and edits, which also

undergo differential expression, may confer unique biological

responses.



Although we analyzed a single individual, insights were gained

by integrating the multiple omics profiles associated with dis-

tinct physiological states. Through examination of molecular

patterns, clear signatures of dynamic biological processes

were evident, including immune responses during infection,

insulin signaling response alterations after the RSV infection.

Indeed, careful monitoring of omics changes across multiple

time points for the same individual revealed detailed responses,

which might not have been evident had the analyses been per-

formed on groups due to interindividual variability. Hence, we

expect that our longitudinal personalized profiling approach

provides valuable information on an individual basis.

We focused on a generally healthy subject who exhibited no

apparent disease symptoms. This is a critical aspect of person-

alized medicine, which is to perform iPOP and evaluate the

importance and changes of all the profiles in ordinary individuals.

These results have important implications and suggest new

paradigm shifts: first, genome sequencing can be used to direct

themonitoring of specific diseases (in this study, aplastic anemia

and diabetes) and second, by following large numbers of mole-

cules a more comprehensive view of disease states can be

analyzed to follow physiological states.

Our study revealed that many distinct molecular events and

pathways are activated both through viral infection and the onset

of diabetes. Indeed, the monitoring of large numbers of different

components revealed a steady decrease of insulin-related

responses that are associated with diabetes-insulin response

pathways occurring from the early healthy state to a high glucose

state. Although many of the activated and repressed pathways

could be detected through transcript profiling, some were de-

tected only with the proteomics data and some with the com-

bined set of data. In addition a large number of connections

with diabetes and insulin signaling using metabolites, miRNAs,

and autoantibodies were observed. One particularly interesting

response detected with the proteomics data was the onset of

the elevated glucose response that was tightly associated with

the RSV infection and a particular subclinical response at day

12/18postinfection. It is tempting to speculate that theRSV infec-

tion and/or the associated event at day 12/18 triggered the onset

of high glucose/T2D. Although viral infections have been associ-

ated with T1D (van der Werf et al., 2007), we are unaware of viral

infection associatedwith T2D. Inflammation and activated innate

immunity have been associated with T2D (Pickup, 2004), and we

speculate that perhaps RSV triggered aberrant glucose metabo-

lism through activation of a viral inflammation response in

conjunction with a predisposition toward T2D. Although this

cannot be proven with the analyses from a single individual, this

study nonetheless serves as proof-of-principle that iPOP can

be performed and provide valuable information. Because dia-

betes is a complex disease there may be many ways to acquire

high glucose phenotype; longitudinal iPOP analysis of a large

number of individuals may be extremely valuable to dissecting

the disease and its various subtypes, as well providing informa-

tion into the molecular mechanism of its onset.

Finally, we believe that the wealth of data generated from this

study will serve as a valuable resource to the community in the

developing field of personalized medicine. A large database

with the complete time-dynamic profiles for more individuals
that acquire infections and other types of diseases will be

extremely valuable in the early diagnostics, monitoring and treat-

ment of diseased states.

EXPERIMENTAL PROCEDURES

The subject and mother in this study were recruited under the IRB protocol

IRB-8629 at Stanford University. Full methods and associated references

can be found in the Extended Experimental Procedures section.

WGS was performed at Complete Genomics and Illumina. High-confidence

SNVs were mostly correct as evidenced by: (1) Illumina Omni1-Quad genotyp-

ing arrays (99.3% sensitivity), (2) a Ti/Tv ratio of 2.14 as expected (1000

Genomes Project Consortium, 2010), (3) Illumina capture and DNA sequencing

(92.7% accuracy), and (4) Sanger sequencing of 36 randomly selected SNVs

(36/36 validated, Table S1). In contrast, the low confidence SNVs had a Ti/

Tv of only 1.46 and an accuracy of 63.8% (19 of 33 confirmed by Sanger

sequencing, Table S1A). Similarly, the majority of the 216,776 high-confidence

indels are likely to be correct as (1) Sanger sequencing validated 14 of 15 (93%)

tested indels and (2) exome-sequencing validated most indels (4,706, 82%);

meanwhile the 806,125 low confidence indels had a low validation rate

(5,225, 0.65%). SVs were called using: (1) paired-end mapping (Chen et al.,

2009) (2) read depth (Abyzov et al., 2011), (3) split reads (Ye et al., 2009),

and (4) junction mapping (Lam et al., 2010) to the breakpoint junction database

from the 1000 G (Mills et al., 2011). A total of 2,566 were found by two different

methods or platforms (CG or Illumina) and were called high confidence; >90%

of these were in the database of genome variants.

Strand-specific RNA-Seq libraries were prepared as described previously

(Parkhomchuk et al., 2009) and sequenced on 1–3 lanes of Illumina’s HiSeq

2000 instrument. The TopHat package (Trapnell et al., 2009) was used to align

the reads to the hg19 reference genome, followed by Cufflinks for transcript

assembly and RNA expression analysis (Trapnell et al., 2010). The Samtools

package (Li et al., 2009a) was used to identify variants including single nucle-

otide variants (SNV) and Indels. Small RNAs were prepared from PBMCs for

the first five time points; sequencing was performed according to Illumina’s

Small RNA v1.5 Sample Preparation Guide.

The Luminex 51-plex Human Cytokines assay was performed at the

Stanford Human Immune Monitoring Center. For mass spectrometry, proteins

were prepared from PBMC cell lysates, labeled at lysines using the TMT

isobaric tags by Pierce, and digested with trypsin and analyzed using reverse

phase LC coupled to a Thermo Scientific (LTQ)-Orbitrap Velos instrument. In

order to profile serum, 14 major glycoproteins were first removed using the

Agilent Human 14 Multiple Affinity Removal System (MARS) column in order

to analyze the less abundant constituents. Metabolites were extracted by

four times serum volume of equal mixture of methanol, acetonitrile, and

acetone and separated using our Agilent 1260 liquid chromatography. Hydro-

phobic molecules were profiled using reversed phase UPLC followed by

APCI-MS and hydrophilic molecule were analyzed using HILIC UPLC followed

by ESI-MS in either the positive or negative mode.

For the integrated analysis, per omics set, for each time-series curve the

Lomb-Scargle transformation (Hocke and Kämpfer, 2009; Lomb, 1976; Scar-

gle, 1982, 1989) for unevenly sampled gapped time-series data was imple-

mented (Ahdesmäki et al., 2007; Glynn et al., 2006; Van Dongen et al., 1999;

Yang et al., 2011; Zhao et al., 2008). This allowed us to obtain a periodogram,

which was used to calculate autocorrelations and then reconstruct the time-

series with even sampling, allowing standard time-series analysis and per-

forming data clustering, while taking the time intervals into account (see

Extended Experimental Procedures).

Autoantibodyome profiling was performed using the Invitrogen ProtoArray

Protein Microarray v5.0 according to the manufacturer’s instructions.

ACCESSION NUMBERS

The SRA accession number for the WGS sequence reported in this paper is

SRP008054.4. The GEO accession number for the RNA-Seq and miRNA-

Seq data sequence reported in this paper is GSE33029. See Extended Exper-

imental Procedures for data dissemination details.
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Stewart, C., Kural, D., Strömberg, M.P., Walker, J.A., Konkel, M.K., Stütz,

A.M., Urban, A.E., Grubert, F., Lam, H.Y., Lee, W.P., et al; 1000 Genomes

Project. (2011). A comprehensive map of mobile element insertion polymor-

phisms in humans. PLoS Genet. 7, e1002236.

Sun, J.C., Liang, X.T., Pan, K., Wang, H., Zhao, J.J., Li, J.J., Ma, H.Q., Chen,

Y.B., and Xia, J.C. (2010). High expression level of EDIL3 in HCC predicts poor

prognosis of HCC patients. World J. Gastroenterol. 16, 4611–4615.

Theodoridis, G., Gika, H.G., andWilson, I.D. (2011). Mass spectrometry-based

holistic analytical approaches for metabolite profiling in systems biology

studies. Mass. Spectrom. Rev. 30, 884–906.

Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat: discovering splice

junctions with RNA-Seq. Bioinformatics 25, 1105–1111.

Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren,

M.J., Salzberg, S.L., Wold, B.J., and Pachter, L. (2010). Transcript assembly

and quantification by RNA-Seq reveals unannotated transcripts and isoform

switching during cell differentiation. Nat. Biotechnol. 28, 511–515.

van der Werf, N., Kroese, F.G., Rozing, J., and Hillebrands, J.L. (2007). Viral

infections as potential triggers of type 1 diabetes. Diabetes Metab. Res.

Rev. 23, 169–183.

Van Dongen, H.P., Olofsen, E., VanHartevelt, J.H., and Kruyt, E.W. (1999).

A procedure of multiple period searching in unequally spaced time-series

with the Lomb-Scargle method. Biol. Rhythm Res. 30, 149–177.

Vaxillaire, M., Cavalcanti-Proença, C., Dechaume, A., Tichet, J., Marre, M.,

Balkau, B., and Froguel, P.; DESIR Study Group. (2008). The common

P446L polymorphism in GCKR inversely modulates fasting glucose and

triglyceride levels and reduces type 2 diabetes risk in the DESIR prospective

general French population. Diabetes 57, 2253–2257.

Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C.,

Kingsmore, S.F., Schroth, G.P., and Burge, C.B. (2008). Alternative isoform

regulation in human tissue transcriptomes. Nature 456, 470–476.

Wu, J.Q., Habegger, L., Noisa, P., Szekely, A., Qiu, C., Hutchison, S., Raha, D.,

Egholm, M., Lin, H., Weissman, S., et al. (2010). Dynamic transcriptomes

during neural differentiation of human embryonic stem cells revealed by short,

long, and paired-end sequencing. Proc. Natl. Acad. Sci. USA 107, 5254–5259.

Yamaguchi, H., Calado, R.T., Ly, H., Kajigaya, S., Baerlocher, G.M., Chanock,

S.J., Lansdorp, P.M., and Young, N.S. (2005). Mutations in TERT, the gene for

telomerase reverse transcriptase, in aplastic anemia. N. Engl. J. Med. 352,

1413–1424.

Yang, R., Zhang, C., and Su, Z. (2011). LSPR: an integrated periodicity detec-

tion algorithm for unevenly sampled temporal microarray data. Bioinformatics

27, 1023–1025.

Ye, K., Schulz, M.H., Long, Q., Apweiler, R., and Ning, Z. (2009). Pindel:

a pattern growth approach to detect break points of large deletions and

medium sized insertions from paired-end short reads. Bioinformatics 25,

2865–2871.

Zhao, W., Agyepong, K., Serpedin, E., and Dougherty, E.R. (2008). Detecting

periodic genes from irregularly sampled gene expressions: a comparison

study. EURASIP J. Bioinform. Syst. Biol. 2008, 769293.
Cell 148, 1293–1307, March 16, 2012 ª2012 Elsevier Inc. 1307


	Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes
	Introduction
	Results
	Overview of Personal Omics Profiling
	Whole-Genome Sequencing
	WGS-Based Disease Risk Evaluation
	Medical Phenotypes Monitoring
	Dynamic Omics Analysis: Integrative Omics Profiling of Molecular Responses
	Dynamic Omics Analysis: Extensive Heteroallelic Variation and RNA Editing
	miRNA Variant Analysis

	Discussion
	Experimental Procedures
	Accession Numbers
	Supplemental Information
	Acknowledgments
	References


