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SUMMARY

Different trans-acting factors (TFs) collaborate and
act in concert at distinct loci to perform accurate
regulation of their target genes. To date, the cobind-
ing of TF pairs has been investigated in a limited
context both in terms of the number of factors within
a cell type and across cell types and the extent of
combinatorial colocalizations. Here, we use an
approach to analyze TF colocalization within a cell
type and across multiple cell lines at an unprece-
dented level. We extend this approach with large-
scale mass spectrometry analysis of immunoprecip-
itations of 50 TFs. Our combined approach reveals
large numbers of interesting TF-TF associations.
We observe extensive change in TF colocalizations
both within a cell type exposed to different condi-
tions and across multiple cell types. We show
distinct functional annotations and properties of
different TF cobinding patterns and provide insights
into the complex regulatory landscape of the cell.
INTRODUCTION

Trans-acting factors (TF) operate cooperatively to regulate gene

expression across various cell types and environmental condi-

tions. Previous studies have shown that different factors bind

in concert at cis-regulatory modules and either collaborate or

compete to achieve complex and accurate regulation of target

genes. Systematic assays of TF cobinding have been performed

and analyzed in lower organisms, such as E. coli (Balázsi et al.,

2005), yeast (Lee et al., 2002), and the Drosophila embryo (Lifa-

nov et al., 2003; Segal et al., 2008). However, these studies have

largely been limited to computational prediction of colocalized

binding or a limited number of data sets and are thus subject

to a large number of false-positive sites and do not necessarily

represent colocalized binding in a specific cell state.

Recently, the ENCODE consortium has described chromatin

immunoprecipitation sequencing (ChIP-seq) analysis of 125 TF

(including 119 DNA-binding factors) in 72 human cell lines (76

in K562 cells) (Bernstein et al., 2012). These data have begun

to reveal complex colocalization patterns driving regulatory

function (Gerstein et al., 2012). However, these studies primarily
focused on a single cell type (K562) and analyzed a limited num-

ber of factors. Moreover, TF colocalizations were primarily stud-

ied in the context of the binding region for one factor, which

greatly limited the number of potential colocalizations that could

be observed. Thus, a global understanding of TF binding was not

evident within or across multiple cell types, nor was the colocal-

ization investigated in an unbiased fashion. Furthermore, the

dynamics of TF binding was not examined.

Here, we present an approach using an unbiased machine

learning method to investigate in detail the colocalization of

TFs within a single cell type and across multiple cell types. The

ChIP-seq data used contain 128 TF binding data sets in a single

cell type (K562), as well as more than 50 factors in multiple cell

types. This is an increase of 83 TF binding data sets over the pre-

viously published ENCODE data. We find an unprecedented

number of colocalizations and dynamic changes in TF colocali-

zations. We integrate these findings with protein-protein interac-

tions identified by mass spectrometry using the same antibodies

for the ChIP-seq analysis. We show the subset of colocalizations

that are due to direct binding within complexes and those that

are due to independent recruitment of TFs to the DNA. Overall,

our results provide many insights into TF colocalizations that

define the regulatory code of humans.

RESULTS

Self-Organizing Map and the Overall Rationale
The study of the cobinding of TFs in large data sets is difficult due

to the high dimensionality of the data. For example, exploration

of the complete space of combinatorial binding for 128 TF

data sets is not feasible because there are more than 1038 pos-

sible combinations of binding. Because of this, previous work

explored this problem in a limited fashion using either enrichment

of pairs of binding factors in a specific context (e.g., at promoter

regions) (Chikina and Troyanskaya, 2012) or binding of pairs of

factors in the context of a specified factor (Gerstein et al.,

2012). In order to test the full combinatorial space without delin-

eating all possible combinations, we employed an artificial neural

network called a self-organizingmap (SOM), which organizes the

TF binding data in an unsupervised manner (Kohonen, 2001).

SOMs have been successfully used in a large number of applica-

tions and have proven to be robust and accurate (Tamayo et al.,

1999; Bernstein et al., 2012). This technique is ideal for display-

ing the high-dimensional information of TF colocalizations while

retaining topological properties of the data. This property allows
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Figure 1. Workflow of SOM Training

Process

At each genomic region bound by at least two TFs,

the binding state of all TFs overlapping the region

is encoded into binary states (binding/not binding).

These binary state vectors are input into an empty

SOM depicted as the gray toroid. After training,

each colocalization pattern (represented by a

hexagon) can be represented by a specific binding

pattern of TFs. Here, we shade the toroid with

POLR2A binding values (blue represents higher

POLR2A binding in a given CLP). The SOM can

then be ‘‘unwrapped’’ for easier display of the

same data. We then display that each CLP repre-

sents a group of CRMs that maintain the same

binding pattern. See also Figure S1.
for a map of the data to be projected in two dimensions with

more similar patterns of binding in closer proximity. Furthermore,

once amap of TF cobinding is generated, it is possible to explore

it for a very wide range of additional properties such as levels of

expression and gene ontology information.

In addition to colocalized binding of individual factors at

genomic loci, some of the apparent cobinding in ChIP-seq

data may be due to direct protein-protein interaction (PPI)

between TFs, resulting in heterodimers or more elaborate com-

plexes. Many well-studied cobinding TF pairs are due to direct

PPI between the TFs; for example, the well-known regulator

AP-1 represents a heterodimer of members of the FOS, JUN,

ATF, and JDP protein families (Hess et al., 2004). To study the
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relationship between TF PPI and TF

cobinding in a high-throughput fashion,

we performed mass spectrometry anal-

ysis on immunoprecipitation samples of

50 TFs. These mass spectrometry data,

together with the ChIP-seq data, enable

an integrative analysis to determine

TF colocalizations resulting from DNA-

directed binding or PPI-directed binding.

Extensive TF Cobinding Patterns
of K562 Cells
We first examined TF colocalization

within a single cell type by selecting an

optimally trained SOM built using 128

ChIP-seq data sets from K562 cells

(see Supplemental Information for SOM

generation methods; http://snyderlab.

stanford.edu/SOM/). The end result is a

toroidal map comprised of a series of

‘‘neurons,’’ each of which contains a

common binding pattern found at distinct

genomic locations. These neurons are

depicted as flat in Figure 1 (both the left

and right sides of our figures and the top

and bottom parts are connected). In addi-

tion, there are no specific boundaries on

the map, meaning that a set of neurons
in the network (represented by a hexagon) may be members of

the same ‘‘cluster’’ of patterns. This property allows us to group

neurons to identify high-level rules of factor colocalization or to

zoom to a fine resolution of colocalization patterns. However,

wewill refer to each neuron as a distinct TF colocalization pattern

(CLP) and containing a set of genomic TF binding regions called

cis-regulatory modules (CRMs). Most of the TF colocalizations

within a single CLP are statistically significant (see Supplemental

Information and Figure S1 available online).

The SOM is able to capture the vast complexity of colocaliza-

tion patterns, resulting in identification ofmany previously known

interactions. For example, we identify JUN+FOS interactions re-

sulting in the known AP-1 complex, which functions in early

http://snyderlab.stanford.edu/SOM/
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Figure 2. FOS-Focused Binding Patterns

FOS containing colocalization patterns are clustered and shown as each row of a heatmap with blue indicating signal for each colocalized factor (columns). The

FOS-focused colocalization patterns fall into five classes: FOS-NFYB, EP300-Mediated Distal, Proximal-HOT, AP1-HOT, and Canonical AP1, which are tagged

with different colors. The number of genomic regions and distance to the closest TSS (white = proximal, blue = distal) for each class of colocalization pattern is

shown on the left of the heatmap. See also Figure S2.
response to stimulus (Hess et al., 2004) (Figure 2). The known

cobinding patterns also follow known rules for their interaction.

For example, CTCF+RAD21+SMC3 interact as part of the cohe-

sin complex (Hou et al., 2010). However, SMC3 does not directly

bind DNA and, as such, we find it in our SOM only in the context

of CTCF and RAD21. This property also holds true for the factor

NFE2, which is known to bind DNA mediated by a MAFF and

MAFK heterodimer (Igarashi et al., 1995).

The SOM is also able to reveal context-dependent TF cobind-

ing as reported in previous work. For example, it was shown that

FOS has different partners under the contexts of proximal or

distal TF binding (Gerstein et al., 2012). Our analysis recapitu-

lates this result; however, we found that the previous interpreta-

tion is a significant oversimplification (Figure 2). In fact, the many

colocalization patterns of FOS reveal that it falls into at least

five overarching categories: (1) ‘‘Canonical AP1’’ in which

FOS+JUND is the major cobinding, along with FOSL1, JUNB,

and ATF3 (other possible AP1 members) at sites distal to

the transcription start site (TSS); (2) ‘‘EP300 mediated

distal’’ in which the canonical AP1 complex cobinds with
RCOR1+TEAD4+EP300 typically at sites distal to the TSS and

likely representing an enhancer state; (3) a novel ‘‘FOS+NFYB’’

category in which FOS does not cobind with JUND and instead

has NFYA and NFYB cobinding; (4) ‘‘Proximal-HOT’’ in which

FOS+MAX+POLR2A+NFYB+PHF8 have firm cobinding along

with frequent additions of many additional factors; (5) ‘‘AP1-

HOT’’ in which many TFs cobind with the AP1 complex. We vali-

dated the novel FOS+NFYB interaction context that represents

�8.1% and 11.5% of all FOS and NFYB binding events, respec-

tively, with a coimmunoprecipitation (Figure S2). Furthermore,

while this paper was in review, an independent observation of

this colocalization was reported (Fleming et al., 2013).

We find exceptional complexity in the context of some TF

colocalization sets. These represent what can be considered

primary binding partners that take part in a large cohort of combi-

natorial regulation. Several canonical, prevalent TF colocaliza-

tion modules, such as CTCF+RAD21+SMC3, EP300+TAL1,

and POL2+TAF1, are shown to be in themost complex contexts,

as evidenced by the large number of CLPs that include these in-

teractions. Many (but not all) of these TF colocalizations with
Cell 155, 713–724, October 24, 2013 ª2013 Elsevier Inc. 715



large binding complexity are those interactions that are

previously known, likely because of their high frequency of

co-occurrence in the genome. We demonstrate this with a

complexity network demonstrating the most frequently inter-

acting pairs (Figure S2). As shown in the figure, many of the

canonical expected interacting TFs have frequent additional

colocalizations.

In addition to confirming known interactions, we find addi-

tional colocalization patterns that have not been previously

documented. These may exist as an additional factor binding

in the context of known ‘‘primary’’ partners or as entirely novel

combinations. In fact, a majority of the colocalization patterns

represent more complex combinations of binding in conjunction

with common themes which, given the more detailed context,

are specifically enriched for different regulatory functions. For

example, the CTCF+RAD21+SMC3+ZNF143 pattern is typically

repressive; however, the association of JUND+MAZ with this

same complex forms a novel binding pattern that upregulates

its targets as evidenced by significantly higher expression of

associated genes (median expression RPKM of 0.03 and 9.11,

respectively, p value < 1 3 10�6, Mann-Whitney U test). These

gene targets are significantly enriched for members of the

inflammasome that is a component of the innate immune system

expressed in myeloid cells. For all discovered interactions and

their associated annotations, see http://snyderlab.stanford.

edu/SOM/.

HOT Regions
We identified colocalization patterns with an unusually high

number of TFs (Figure 3A). We consider the CLPs with more

than half of the measured factors bound to be analogous to pre-

viously described HOT regions (Moorman et al., 2006). The

CRMs in these regions have been found to be frequently asso-

ciated with promoters and represent motifless binding of TFs

potentially to an open region of chromatin (Gerstein et al.,

2010; Moorman et al., 2006; Roy et al., 2010; Yip et al., 2012).

Accordingly, as shown in Figure 3C, we show that the HOT re-

gions largely overlap RNA polymerase II binding and contain

CRMs, which are closer to the TSS than CLPs composed of

fewer factors (Figure 3B). Interestingly, using our SOM analysis,

we also identify many TFs that colocalize with few partners and,

thus, tend to avoid binding to HOT regions, which had not

been reported previously. For example, the combination of

CTCF+RAD21+SMC3 is known to act as an insulator, and pat-

terns that contain these factors are mostly excluded from the

HOT regions. Other factors not binding to HOT regions include

BACH1, CTCFL, MAFF, MAFK, NFE2, SETDB1, SPI1, USF1,

USF2, and ZNF143.

Analysis of RNA expression for targets of each of the CLPs re-

veals that HOT regions upregulate gene expression, which is

consistent with the observation that they overlap POLR2A

(RNA polymerase II) binding and the hypothesis that they locate

at active promoters (Figure 3D). Interestingly, we find a small

cluster of highly expressed CLPs that are distinct from the

HOT regions but show similar properties and are bound by

only the POLR2A complex. Our results suggest that either these

regions require very few TFs or that they belong to CLPs contain-

ing TFs not included in our data set (Figures 3C and 3D, black
716 Cell 155, 713–724, October 24, 2013 ª2013 Elsevier Inc.
circles). The sets of genes regulated by these CLPs are signifi-

cantly enriched for mRNA processing, specifically ribosomal

genes, mRNA splicing, and transcription termination.

Another interesting observation is that HOT regions have very

different conservation patterns than those regions matching

non-HOT CLPs. This is particularly evident in the comparison

of minimum and maximum conservation scores where we

observe that both the lowest and highest conservation scores

correspond to the HOT CLP regions (Figures 3E and S3). The

observation suggests that HOT CRMs contain both very

conserved and fast-evolving components, which is in concor-

dance with the theory that the binding site motifs are more

conserved than background sequence but the arrangement

of the motifs (copy number, order, orientation, and spacing)

evolves more rapidly (Xie et al., 2008).

We detail two CLPs in Figures 3F and 3G to demonstrate the

above differences between the two types of regions. Figure 3F

shows a CLP with 29 matching CRMs. These CRMs have 33

bound TFs, are on average at the TSS, all have POLR2A binding,

have a very high median RPKM gene expression value of 76.8,

and are conserved with a maximum PhyloP score of 4.95. This

HOT region is contrasted with a non-HOT region in Figure 3G

in which we demonstrate a CLP with 155 matching CRMs.

These CRMs are �20 kb from a TSS, have no POLR2A overlap,

have low expression of associated genes (1.5 median RPKM),

and have lower maximum conservation with a PhyloP score

of 1.97. This non-HOT region represents the canonical

MAFF+MAFK+NFE2 binding complex (Igarashi et al., 1995).

DNase I Sites Overlap Only 60% of CRMs
We next compared the colocalization patterns with DNase I hy-

persensitive sites from ENCODE in K562 cells. DNase I hyper-

sensitive sites were recently suggested to identify 95% of TF

binding when pooled across a large number of cell types (Bern-

stein et al., 2012). However, restricting our analysis to K562

cells, we found that many CLPs do not overlap DNase I sites,

and only 60% of CRMs have any overlap (Figure S4). To rule

out the possibility that the low overlap rate is a threshold arti-

fact, we extended the published DNase I site peaks and found

that about 35% of CRMs are located more than 1 kb away, and

22% of CRMs are located more than 5 kb from the nearest

DNase I peaks (Figure S4). This discrepancy with previously re-

ported numbers appears to be due to the high complexity of TF

binding in promoter regions, which are identified by the DNase

regions and less complex patterns of binding in distal regions

(which are often independent of such sites). The overlap is

significantly lower at distal binding regions for almost all TFs

(Figure S4). HOT regions, typically at promoters, are almost

ubiquitously identified by the DNase I assays. Furthermore,

the two different DNase I assays used by the ENCODE con-

sortium (those from the University of Washington and from

Duke University) appear to identify different subsets of CLPs

with the Duke-developed assay more completely overlapping

specific CLPs and the UW-developed assay more broadly iden-

tifying more CLPs (Figure S4). Thus, our study reveals that many

binding regions are only found by analysis of TF binding pat-

terns and would be missed by DNase I hypersensitive sites

assays.

http://snyderlab.stanford.edu/SOM/
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Figure 3. General Properties of Colocalization Patterns and HOT Regions

(A) Overlay of the number of TFs comprising each CLP demonstrates that some CLPs represent binding of ‘‘HOT’’ regions where a large number of factors bind

the genome in close proximity.

(B–E) These regions are close to the TSS (B), have high POLR2A occupancy (C), drive high expression (D), and have higher maximum conservation than non-HOT

regions (E).

(F) An example of a CLP describing HOT binding (depicted by purple arrow in SOM plots). This CLP has 29 CRMs that match, consists of 33 different TFs binding,

overlaps the TSS, has high POLR2A occupancy, has a very high RPKM, and is generally conserved.

(G) A non-HOT region with only three TFs binding (depicted by green arrow in SOM plots). There are 155 CRMs matching this pattern with an average of >20 kb

from the TSS, no POLR2A, low RPKM, and lower maximum conservation. Black circles represent an interesting cluster of CLPs associated with high expression

and only POLR2A with no other TF binding. See also Figures S3 and S4.
We compared the CRMs with previously published chromatin

state data from K562 cells (Bernstein et al., 2012). We found that

the CRMs that overlap with DNase I sites are enriched at active

promoters, weak promoters, and strong enhancers. On the other

hand, the CRMs that do not overlap with DNase I sites are signif-

icantly enriched for weakly transcribed regions, polycomb

repressed regions, and heterochromatic regions. These findings

suggest that TF binding and colocalization at more active regu-

latory regions are readily identified by DNase I experiments,

but those in more silent regions are not. We further investigated

the colocalization patterns that do not overlap with DNase I sites
and found that previously reported heterochromatin-bound fac-

tors are in this category, such as SETDB1 and ZNF274 (Frietze

et al., 2010; Schultz et al., 2002; Bernstein et al., 2012). In fact,

the CLP of SETDB1+TRIM28+ZNF274 has no DNase I overlap

as shown by either assay but maintains a significant amount of

GO and Pathway enrichment. However, only 5% of the non-

DNase I overlapping CRMs contain heterochromatin-bound fac-

tors SETDB1 or ZNF274, suggesting large variety of TF colocal-

ization outside of DNase I sites. The location of a CRM in open

chromatin or heterochromatin may specify the distinct roles

different CLPs play in the genome.
Cell 155, 713–724, October 24, 2013 ª2013 Elsevier Inc. 717



Figure 4. GO and Reactome Pathway Analysis of All Colocalization Patterns

(A) The enriched GO and pathway terms for each CLP were clustered and show some common terms that exist for multiple CLPs.

(B) HOT regions (blue arrows) are significantly enriched for GO and pathway terms related to housekeeping functions.

(C) A cluster enriched for immune function (purple arrows) is also enriched for STAT1, STAT2, and IRF1 binding. This cluster includes regions that are activated

under interferon response in our data. The red outlined CLPs indicate a set of CRMs bound by IRF1, STAT1, and STAT2 after 30 min of interferon treatment (left)

and after 6 hr of interferon treatment (right). STAT1 binding can be shown to only exist after interferon treatment.
SOM Reveals Different Binding Patterns across
Conditions
To further understand the functional implications of the colocal-

ization patterns and their topological relationship on the SOM,

we conducted systematic GO and pathway enrichment analysis

on CRMs matching each CLP. We clustered the enriched func-

tional terms based on the adjusted p values of the enrichment

(Figure 4A). Strikingly, the largest clusters on both GO and

pathway heatmaps are formed by CLPs located at the center

of the HOT regions on the SOM (Figure 4B). These CLPs are en-

riched with housekeeping GO terms and pathways, suggesting

that promoters of housekeeping genes are largely accessible

and are bound by many different TFs.

We also examined the dynamics of CLPs under different

experimental conditions that had not been systematically inves-

tigated previously. We analyzed a series of ChIP-seq data for

STAT1 and IRF1 after treatment with interferon (Figure 4C). We
718 Cell 155, 713–724, October 24, 2013 ª2013 Elsevier Inc.
found time-dependent association among IRF1, STAT1, and

STAT2. Specifically, we identify one binding pattern representing

IRF1+STAT1+STAT2 binding 30 min after interferon treatment

and another representing IRF1+STAT1+STAT2 binding at both

a 30 min and a 6 hr time point. Accordingly, the enriched GO

terms for CRMs matching these two CLPs include many inter-

feron response- and immune response-related terms, and the

enriched pathways also include interferon signaling and innate

immune system. Our results demonstrate that complex patterns

of TF colocalization can change dynamically over short temporal

periods and in a functionally relevant fashion.

Regulatory Changes across Cell Types
Because the inputs to the SOM are regions with TF binding, we

are able to include binding patterns from multiple cell types that

have ChIP-seq data from the same TFs. This analysis allows us

to explore colocalization patterns that may be unique or shared
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Figure 5. A K562 and GM12878 SOM Can Be Generated Using Factors Shared between the Two Cell Types

TheCLPs are shaded based on the number of CRMs from either cell typematching each CLPwithGM12878CRMs shaded red andK562CRMs shaded blue. The

CLPs containing amixture of the two cell types have an intermediate shading as depicted in the legend. A large number of the CLPs are cell-type specific, and the

HOT regions (region outlined in yellow) overlap the cell-type-specific CLPs. These HOTCLPs are enriched for housekeeping GO terms.We also display cell-type-

specific GO terms that are not in HOT regions aswell as examples of commonCLPs such as REST+ZNF143, ZNF143+CTCF+SMC3+RAD21, and CTCF+RAD21.

See also Figure S5.
among cell types. We trained two multi-cell-type SOMs to

examine the variance of TF association relationships between

different cell types. The first multi-cell-type SOM is trained with

CRMs from two cell types: K562 and GM12878. ChIP-seq data

for 53 TFs assayed on both cell lines were included in this com-

parison, and we term it ‘‘deep comparison.’’ The second multi-

cell-type SOM is trained with CRMs from five cell types: K562,

GM12878, H1, HepG2, and HelaS3. ChIP-seq data for 19 TFs

were shared in all the five cell lines and are included in the com-

parison; we term this analysis the ‘‘broad comparison.’’

In the deep comparison, our analysis revealed that approxi-

mately one-third of the colocalization patterns are K562 specific,

one third of the patterns are GM12878 specific, and one third of

the patterns are shared by two cell types (Figure 5). An intriguing

feature of the deep comparison is that the patterns specific to

one cell type are mostly clustered together, forming the ‘‘terri-

tory’’ of that cell type. This phenomenon is likely to reflect the

different preferences of TF usage and TF colocalization between

cell types. Patterns that are shared by the two cell types repre-

sent TF associations that perform similar function in the two

cell types. For example, REST functions as a neuronal gene

repressor in both K562 and GM12878, and its colocalization

with ZNF143 is shared in the two cell types. The REST+ZNF143

CLP is also enriched with neuronal activity functional terms for

both cell types. Other shared patterns include SPI1+ELF1,
SIN3A+MAX+MXI1, EP300+PML+SPI1, and MAZ+EGR1+SP1,

indicating that these may be common colocalizations.

Cell-type-specific patterns are likely to account for the pheno-

typic difference between cell lines. A majority of the HOT pat-

terns are cell-type specific, which supports observations from

previous studies (Yip et al., 2012). As above, these HOT regions

are enriched for housekeeping functional GO terms and path-

ways. Although these enrichments appear in cell-type-specific

CLPs, the terms are not necessarily specific to one cell type.

This is because different CLPs in the two cell types can describe

the same genomic binding region and, thus, two different CLPs

can be regulating the same sets of genes. The cell-type-specific

CLPs are also enriched with functional terms that are associated

with the properties of the individual cell types. For example,

lymphocyte costimulation and regulation of antigen processing

and presentation are enriched in CLPs specific for GM12878, a

lymphoblastoid cell line. Furthermore, tumor necrosis factor re-

ceptor binding and apoptotic execution phase are enriched in

K562-specific CLPs, which have been previously reported as en-

riched in K562-specific gene expression (Hietakangas et al.,

2003).

The broad comparison across five cell types also results in

patterns specific to each cell type (Figure S5). This is surprising

given the limited number of TFs that are shared across the cell

types. However, the separation of colocalization patterns into
Cell 155, 713–724, October 24, 2013 ª2013 Elsevier Inc. 719



cell-type-specific domains underscores the different TF utiliza-

tion patterns apparent in the deep comparison. Furthermore,

these domains are enriched for GO and pathway terms that

again match housekeeping terms in HOT regions and functional

terms specific to each cell type in the cell-type-specific domains.

We also identify HOT binding patterns that are shared among cell

types, likely due to the limited scope of factors used.

Cobinding Mediated by TF Protein-Protein Interactions
The colocalization patterns that we identify may be due to stable

physical interaction of the proteins (directly or indirectly) as part

of the same complex, whereas others may be due to colocaliza-

tions that occur only in the context of the regulatory DNA. In or-

der to further explore the potential mechanism of colocalization,

amapping of protein-protein interactions was integrated with the

CLPs.Many efforts have been carried out to construct a compre-

hensive picture of the protein interaction networks to understand

the regulation of biological processes in the cell (Malovannaya

et al., 2011; Rual et al., 2005; Stark et al., 2006; Stelzl et al.,

2005). However, these data sets are derived from literature cura-

tion, generated by using a yeast two-hybrid system, or are per-

formed in a different cell type. Because TF cobindings are highly

context dependent and cell-type specific, these previously

defined networks provide an inaccurate and incomplete picture

in K562 cells. We identified endogenous protein complexes from

K562 using antibody immunoprecipitation and mass spectrom-

etry (IP-MS) to identify potential TF protein-protein interactions

that are likely occur in vivo (Table S1). A total of 24 antibodies

used for ChIP-seq assays were tested, which enabled us to

investigate TF-TF interactions in our data set that occur in the

same protein complexes.We identified 40 pairs of TF-TF interac-

tions for which we have ChIP-seq data for both TFs. Among the

40 pairs, 7 (17.5%) were previously known protein-protein inter-

actions, whereas the remainder are novel. Importantly, we found

that 30 out of the 40 TF-TF interactions overlap with the colocal-

ization patterns that we identified with ChIP-seq experiments

(p value < 0.05).

To further examine the scenario in which two TFs are tethered

by a third protein, we also included 26 TF IP-MS data sets that

were performed in K562 cells, but not used for the ChIP-seq as-

says.With the interactions identified by the total of 50 antibodies,

we constructed a PPI network that revealed both direct and indi-

rect interactions between TFs studied in our ChIP-seq data set.

In total, we identified 207 direct or indirect interactions, and 172

(83%) of them match a colocalization pattern in our SOM

(p value < 0.05). The TF cobinding patterns suggested to be

due to protein-protein interactions are members of �40% of

the CLPs. In addition, we were able to associate some CLPs

directly with PPI subnetworks where several TFs contained in

the colocalization pattern are connected (Figure 6). These asso-

ciations reveal colocalization patterns that are due to a protein

complex rather than simply individual binding events on theDNA.

The binding of a protein complex to the DNA sequencemay be

primarily through a subset of the factors acting as a DNA binding

anchor to which the other protein components are tethered. We

explore this possibility by examining motif usage, which is sug-

gestive of direct TF interaction with DNA. For members of com-

plexes suggested by the IP data, we compared the motif usage
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for TFswithin a CLP that containsmultiple interacting factors and

with CLPs, where the factor is not found with these partners. We

found that uneven motif usage is evident in many of these cases.

For example, the CLP that consists of MAX, ZNF143, TRIM28,

and CBX3 was present as a connected PPI subnetwork in the

IP-MS data: we identified direct interactions between MAX-

CBX3 and TRIM28-ZNF143, as well as an indirect interaction be-

tween CBX3-TRIM28 that was also identified in previous studies

(Higo et al., 2010; Rosnoblet et al., 2011; Ryan et al., 1999). For

the three TFs for which we have known DNA binding motifs

(MAX, ZNF143, and TRIM28), there was a significant difference

of motif usage (Figure 6F). MAX and ZNF143 have significantly

higher motif density when they bind in CLPs independent of

the other partners in this complex. This trend is evident in all ver-

sions of motif consensuses for the two TFs. In contrast, TRIM28

showed higher motif density when it binds together with the

other TFs in the complex thanwhen independent of the complex.

The results suggested that when the four TFs form a complex,

their binding to the DNA sequence is likely anchored through

TRIM28, whereasMAX and ZNF143 are likely to be tethered (Fig-

ure 6G). Thus, the combination of SOM and PPI information can

be used to decipher binding relationships among the different

members of protein complexes.

DISCUSSION

How the thousands of TFs in human cells colocalize under

different conditions is a central question in understanding gene

regulatory mechanisms. To better understand this TF colocaliza-

tion, two complimentary efforts are needed. First, we need a

comprehensive map of TF binding sites in different cell types

and conditions. In this work, we aimed to interpret the most

comprehensive human ChIP-seq data set to date that is

comprised not only of the largest number of TFs but also the rich-

est of cell conditions. Second, we need powerful computational

methods to thoroughly and elegantly interpret the large data

sets. The exponentially increasing number of high-throughput

data sets has provided an unprecedented opportunity to study

the complexity of TF colocalization relationships with their

many thousands of targets in the genome, but the large volume

and high dimensionality has made the data unintuitive to under-

stand and difficult to interpret without advanced computational

methods. The application of SOMs in this study provides an

elegant way to not only explore these complex relationships in

a comprehensive and rapid fashion but also to visually interpret

the results. This work represents a significant advance over pre-

vious studies that study the colocalization of two TFs under the

context of a third TF, a more limited solution (Gerstein et al.,

2012). The SOM method allows all combinatorial associations

to be explored.

The advantage of analyzing TF colocalization in higher

dimension is that it allows much more insight to the complexity

of binding that cannot be captured by previous methods. For

example, in the FOS-NFYB colocalization analysis, we revealed

more scenarios of colocalization between FOS and other TFs

than previously known. We also showed that a majority of TF

colocalization involves canonical binding contexts coupled

with additional complex binding patterns, which often
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Figure 6. Association between SOM Trained from ChIP-Seq Data and PPI Constructed from Mass Spectrometry Data

(A) A PPI network showing both direct and indirect TF interactions was constructed based on the mass spectrometry assays of immunoprecipitation of 50 TFs.

The blue edges in the network represent direct TF interactions identified by the IP-MS data, and the gray edges represent indirect TF interaction.

(B) Many TF interactions are identified in the colocalization patterns discovered by the SOM. The numbers of TF interaction pairs seen in the SOMare represented

by the blueness of each CLP. Colocalization patterns represented in each CLP are mapped to a subnetwork on the PPI network.

(C–G) For example, (C) the CLP pointed by the blue arrow is mapped to the subnetwork consisting of E2F6, SIN3A, MAX, and POLR2A; (D) the CLP pointed by the

red arrow is mapped to the subnetwork consisting of CBX3, BACH1, NEF2, CEBPB, and EP300. KIF5B serves as an intermediate protein tethering CEBPB and

EP300; (E) the CLP pointed by the purple arrow is mapped to the subnetwork consisting of RAD21, MAZ, SMC3, and ZNF143. SF3B2 serves as a mediator

tethering MAZ and ZNF143; (F) violin plot of the motif usage for MAX, TRIM28, and ZNF143 when they all colocalize (red), a subset colocalize (green), or bind

independently (blue). The dots are average motif density in each category. MAX and ZNF143 have higher motif density when they bind independent of the

complex. TRIM28 (background shaded red) has highermotif density when it binds as a protein complex and is likely to interact with the DNA in this complex; (G) an

illustration of the MAX, TRIM28, ZNF143, and CBX3 protein complex identified by the IP-MS data set showing the predicted interaction with the DNA. Direct

interactions are in blue, whereas the yellow interaction represents an indirect interaction in our data that has been previously validated.

See also Table S1.
associate with different regulatory outcomes. These data

further prove that the previous view of TF colocalization in a

low dimension is an oversimplification. Another advantage of

our method is that it is highly integrative, which naturally en-

ables cross-condition analysis and allows convenient investiga-

tion of many properties of TF colocalization (e.g., associations

with gene expression levels, distance from promoters, etc.)

by integrating other functional genomics data that are abun-

dantly available.
The integration of two major high-throughput fields, genomics

and proteomics, is another advance in this study.We incorporate

a largeChIP-seqdata set anda largeendogenous protein-protein

interaction data set from the sample cell line to both cross-vali-

date one another as well as explore the mechanism of TF coloc-

alization. In general, there are two canonical models to explain

TF colocalization. First, TFs colocalize because their binding mo-

tifs locate near each other on the genome sequence with little or

weak association as part of a protein complex. Alternatively,
Cell 155, 713–724, October 24, 2013 ª2013 Elsevier Inc. 721



TFs colocalize because they interact in a stable protein complex.

From the study of TF binding motifs, it is likely that the first model

only partially explains TF colocalization asmany of the TF binding

sites do not contain binding motifs (e.g., Martone et al., 2003).

Although far from complete, our IP-MS data set, coupled with

the SOM data from the large ChIP-seq data set, allowed us to

take these observations to a new level. We found that, for a TF

complex deduced from IP data, only some components within a

CLP have a motif and likely contact the DNA; other components

are not enriched even though themotifs may be enriched in other

CLPs. Thus, by using the SOMmap and IP complex data, we can

propose binding relationships among the different factors at

many regions of the genome, thereby providing a better under-

standing of likely mechanisms of binding. We expect that, with

larger and more comprehensive data available in the near future,

we will be able to define an even better map of the relationships

that govern thecomplexmechanismscontrolling gene regulation.

EXPERIMENTAL PROCEDURES

ChIP-Seq Data

All analysis is performed on the GRCh37 (hg19) reference genome. ChIP-seq

experiments protocol, quality control, and preprocessing followed ENCODE

standards and were performed as part of the ENCODE standard processing

pipeline (Landt et al., 2012; Bernstein et al., 2012). All data are available for

download from the UCSC ENCODE portal. Peak regions identified from

different ChIP-seq data for the same TF in identical cell types and conditions

were merged into a union set for our downstream analysis.

Determination of CRMs

We collected and standardized 158 ChIP-seq data sets representing the bind-

ing of 128 TFs in different conditions of K562 cells. We also collected 52 pairs

of ChIP-seq data sets in K562 and GM12878 cells for the deep comparison

and 18 sets of ChIP-seq data in K562, GM12878, HepG2, HelaS3, and

H1hESC cells for the broad comparison. Using these data, we defined a cis-

regulatory module as the maximum overlapping block of the intersection of

all TF binding peaks and required that at least two TFs bound in a CRM to

be considered for further analysis. In the deep comparison and broad compar-

ison, CRMs were defined as the maximum overlapping block of TFs in an indi-

vidual cell type.

In addition to the intersection method used, we explored the use of 500 bp

windows, 1 kb windows, and DNase I hypersensitive sites to define cis-regu-

latory modules.

We found that using window approaches resulted in significantly more

CRMs than the other two approaches because most CRMs were likely broken

into multiples due to the windowing. Furthermore, we found that using the

intersect approach resulted in approximately the same number of CRMs as us-

ing DNase hypersensitive sites (�150,000 in the deep comparison and

280,000 in the broad comparison) while allowing us to identify CRMs, which

may be independent of DNase I sensitivity.

SOM Training and Parameters

We identified each cis-regulatory module as either bound (1) or not bound (0)

by overlap with peaks from each TF. This results in the cis-regulatory modules

being represented as a binary vector of 128 dimensions, with each dimension

representing a TF. These vectors are used as input to the SOM, and the result-

ing descriptions of each neuron are also described in this form.

For each SOM trained, we followed the following rules: (1) The SOM is initial-

ized as a random toroid, (2) the SOM is hexagonal, (3) the total number of

neurons is:

n=

ffiffiffiffiffiffiffiffiffiffiffiffi
#TFs

2

r
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minð#genomicregionsinacelltypeÞ3#celltypes

p

722 Cell 155, 713–724, October 24, 2013 ª2013 Elsevier Inc.
(4) The number of neurons along the y axis is:

ydim=

(
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=1:3333

p
R; P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=1:3333

p
R%2== 0

P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=1:3333

p
R+ 1; P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=1:3333

p
R%2==1

(5) The number of neurons along the x axis is:

xdim= Pn=ydim+ 0:5R

(6) The SOM is trained for 100 epochs (that is, complete iterations through the

data set), (7) the SOM update radius was one-third of the map size with a

learning rate (a) of 0.05 (these were linearly decreased throughout the training

process), and (8) we selected for analysis the best of 1,000 trials based on

lowest quantization error (defined as the average Euclidean distance of all

CRMs to their best matching neuron).

The number of neurons is a modification of the simple heuristic (5 3 sqrt(k))

proposed by Vesanto (2005) where we better account for the total number of

dimensions of our larger data set as well as the number of training samples.

Our modification consists of the following two adjustments: (1) parameter k

scaled to account for ‘‘effective’’ size of input CRMs by scaling to the size of

the smallest input (only for multiple cell-type comparisons) and (2) replacing

the constant ‘‘5’’ with a parameter to scale for the dimensionality being

explored by the SOM. The rationale here is that a SOM with higher dimension-

ality will likely expand over a larger space and will require more neurons to

properly model the distribution.

The training described above is performed in R using a variant of the ‘‘koho-

nen’’ package available from CRAN. Minor modifications were performed to

the R package to allow for better handling of the large data sets in memory.

Furthermore, significant changes to the graphical output of the package

were made to allow for the improved figures displayed here and on the supple-

mental web site. Final optimal seeds for the training were K562 SOM: 810,

deep comparison SOM: 293, and broad comparison SOM: 272. 100 epochs

of training resulted in stabilization of the SOMs, and of the 1,000 iterations of

the SOM, there was minimal divergence with the best SOM having less than

0.3% difference in error than the average error of the nonoptimal SOMs. Final

SOM sizes were 62 3 46, 50 3 40, and 47 3 34 for K562, deep comparison,

and broad comparison, respectively, and average CRM distance to the best

matching neuron was 2.45, 1.38, and 0.22 for K562, deep comparison, and

broad comparison, respectively.

The input for multiple cell-type SOM training consists of CRMs identified

from multiple genomes. For example, in the deep comparison SOM, the

CRMs from K562 cells and GM12878 cells were identified independently

and pooled together for the training. After the training, the CRMs from the

two cell types with the sample CLP were clustered together. Because we

know the origin of each CRM, we could calculate the proportion of the same

CRMs between the two cell types.

TF Pull-Down Assays

For each immunoprecipitation (IP) experiment, 2 3 108 of frozen K562 cells

were thawed in 12 ml cold PBS at 4�C for 1 hr on neutator. The cells were

spun at 1,500 rpm for 3 min, and the supernatant was removed. Then pellets

were suspended in hypotonic buffer and dounced by homogenizer on ice for

30 strokes. The lysates were aliquoted into two tubes and centrifuged at

600 g at 4�C for 8 min. The supernatant was discarded, and nuclear pellets

were resuspended in 1 ml 13 RIPA buffer and incubated on ice for 30 min.

The nuclear lysates were further centrifuged at 14,000 rpm at 4�C for

15 min. The supernatant was transferred to a 50 ml falcon tube, and the total

volume was adjusted by 13 RIPA buffer to a final of 30 ml. Each tube was sup-

plied with 12 mg antibody (or equal amount of normal IgG in a parallel control

sample) and incubated at 4�C with neutator rocking overnight.

Each sample lysate was mixed with 150 ml of prewashed Protein A/G-

agarose beads and then incubated at 4�C for 1 hr on neutator rocker. Agarose

beadswere pelleted andwashedwith ice-cold RIPA buffer three times and ice-

cold PBS once. The beads were transferred to a 1.5 ml Eppendorf tube and

resuspended in 55 ml of 23 Laemmli buffer containing b-mercaptoethanol,

boiled, and stored in �20�C for further usage.



Constructing PPI Networks

Among the 50 TF antibodies used for IP-MS experiments, 24 TFs also have

corresponding ChIP-seq data in K562 cells. Besides the targeted TF, the IP

sample also pulled down other proteins with average spectral counts greater

than that in the parallel control sample. Among this data set, there are 40 pairs

of TF protein-protein associations in which both proteins have corresponding

ChIP-seq data sets in K562 (defined as direct PPI). To preserve weak protein

interactions during complex isolation, we constructed a protein-protein

network to discover more potential protein-protein associations. After pooling

all the 50 TF IP-MS data sets together, we scored protein-protein interactions

based on spectral counts using Significance Analysis of INTeractome (SAINT)

software package (Choi et al., 2012). Protein-protein associations with

average probability greater than 0.7 and containing at least one TF that has

ChIP-seq data in this study were selected and combined with the previous

direct TF PPI, yielding a complicated TF protein-protein association network

(Table S1). Protein-protein associations tethered by a third protein in the

network were defined as indirect PPI. For example, if protein B and C are iden-

tified frommass spectrometry analysis of protein A IP, B and C are considered

as indirect PPI.

For each of the direct and indirect TF interactions identified by mass spec-

trometry data, if both TFs are contained in a significant colocalization pattern in

SOM, we consider the interaction being cross validated. A colocalization

pattern consisting of more than two TFs has multiple possible protein-protein

interaction pairs and therefore can validate more than one TF interaction (Fig-

ure 6B). 172 out of 207 interactions (both direct and indirect) are cross-

validated using the above method. We calculated the p values by fixing the

pulled-down TFswhile permuting all the partners identified bymass spectrom-

etry and calculating the odds of getting higher cross-validations. A total of

200 permutations were performed, enabling us to estimate the p value to the

level of 0.05.
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