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SUMMARY
Ameta-genome-wide association study across eight psychiatric disorders has highlighted the genetic archi-
tecture of pleiotropy in major psychiatric disorders. However, mechanisms underlying pleiotropic effects of
the associated variants remain to be explored. We conducted a massively parallel reporter assay to decode
the regulatory logic of variants with pleiotropic and disorder-specific effects. Pleiotropic variants differ from
disorder-specific variants by exhibiting chromatin accessibility that extends across diverse cell types in the
neuronal lineage and by altering motifs for transcription factors with higher connectivity in protein-protein
interaction networks. We mapped pleiotropic and disorder-specific variants to putative target genes using
functional genomics approaches and CRISPR perturbation. In vivo CRISPR perturbation of a pleiotropic
and a disorder-specific gene suggests that pleiotropymay involve the regulation of genes expressed broadly
across neuronal cell types and with higher network connectivity.
INTRODUCTION

The World Health Organization estimates that 1 in 8 people (970

million) suffer from a psychiatric disorder of some kind.1 Because

of the high comorbidity between different psychiatric disorders,

common genetic etiology has been suggested.2 A study

comparing genetic correlations across 25 different brain disor-

ders suggested shared genetic risk factors (pleiotropy) across

psychiatric disorders.3

To investigate this further, the Psychiatric Genomics Con-

sortium (PGC)4 conducted a meta-genome-wide association

study (GWAS) of eight psychiatric disorders, including autism

spectrum disorder (AUT), attention-deficit/hyperactivity disorder
All rights are reserved, including those
(ADD), schizophrenia (SCZ), bipolar disorder (BIP), major

depressive disorder (MDD), Tourette syndrome (TS), obses-

sive-compulsive disorder (OCD), and anorexia nervosa (ANO),

to identify pleiotropic genetic variants.5 Among the 136

genome-wide significant (GWS) loci (hereafter referred to as

‘‘cross-disorder loci’’), 109 loci were associated with more than

one disorder, underscoring widespread pleiotropy in psychiatric

genetics. Pleiotropy may account for the extensive phenotypic

comorbidity observed across different psychiatric disorders.3,6

Functional characterization of these loci suggested a neurode-

velopmental origin,5 but the mechanisms by which these vari-

ants confer broader influence across diagnostic boundaries

are unknown.
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Figure 1. MPRA-active elements are enriched with Alu repeats and TFBMs

(A) We generated a cross-disorder GWAS MPRA library, which was introduced into HNPs. We performed (1) element-level analysis to identify MPRA-active

elements with higher enhancer activity than randomly scrambled sequences and (2) variant-level analysis to identify MPRA-allelic variants with differential allelic

activity between A1 and A2 alleles.

(B) Summary of the different classes of elements and variants defined in this study. Element-level analysis stratified cross-disorder variants into MPRA-active

(false discovery rate using the Benjamini-Hochberg, FDR < 0.05) and MPRA-inactive (p > 0.1) elements. Variant-level analysis stratified cross-disorder variants

into allelic (FDR < 0.05) and non-allelic (p > 0.1) variants. emVars were defined as the intersection of MPRA-active elements and MPRA-allelic variants. emVars

were further categorized based on the number of associated psychiatric disorders (mDisorder1 vs. mDisorder3) and computational fine-mapping (fine-mapped

[FM] vs. non-fine-mapped [nonFM]).

(C) Enhancer activity (measured by the RNA/DNA ratio of a given element) of MPRA-active and MPRA-inactive elements compared with randomly scrambled

sequences. RNA/DNA ratios of positive controls (CMV promoter and EF1a promoter) are also depicted.

(D) Enrichment of MPRA-active, active-Alu, and active-noAlu elements in CREs of different cell types in the developing cortex compared with MPRA-inactive

elements. *FDR < 0.05. p values and odds ratio (OR) calculated by two-sided Fisher’s exact test. Active-noAlu; two-sided Fisher’s exact test, OR > 1, RG FDR =

9.923 10�7, IPC FDR = 1.293 10�5, earlyEN FDR = 4.913 10�6, dlEN FDR = 5.493 10�6, ulEN FDR = 5.493 10�6, IN:Prog FDR = 7.863 10�7, IN:CGE FDR =

(legend continued on next page)
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To further examine the potential differences in functional char-

acteristics between variants with pleiotropic effects and those

specific to certain disorders, we employed a massively parallel

reporter assay (MPRA).7 Given the evidence supporting a neuro-

developmental origin for these disorders,5,8–10 we carried out

MPRAon17,841cross-disorder risk variants (seeSTARMethods

for selection criteria) in human neural progenitor cells (HNPs) to

understand their impact ongene regulationduringneurodevelop-

ment. We also included tiled 150 base pair (bp) sections of the

cytomegalovirus (CMV) and elongation factor 1 alpha (EF1a) pro-

moters as positive controls and scrambled DNA sequences with

matching GC content to the MPRA library as negative controls.

The resulting MPRA library consisted of a 150-bp region of the

genome with a risk or protective allele in the middle, a minimal

promoter, a luciferase reporter gene, and a unique 20-bp bar-

code. This library was introduced to HNPs, and after 72 h of

transfection, DNA and RNA were extracted and subjected to

high-throughput barcode sequencing. Allelic expression was

summarizedbyaggregatingRNAandDNAbarcodecounts sepa-

rately for each allele (Figure S1A). The resulting RNA/DNA ratios,

which measure the regulatory activity, demonstrated a high

average Pearson correlation coefficient (r = 0.985) across 22

biological replicates (Figure S1B).

RESULTS

Gene regulatory activity of variant-harboring elements
We quantified the enhancer activity of 150-bp variant-harboring

elements by comparing them to randomly scrambled sequences

(Figure 1A and S1A). Among the 15,902 variant-harboring

elements that passed quality control, 1,478 (9.3%) elements

showed significantly greater enhancer activity compared with

randomly scrambled sequences (MPRA-active elements), while

10,675 (67.1%) elements showed comparable enhancer activity

to randomly scrambled sequences (MPRA-inactive elements,

Figures 1A–1C and S1C; Table S1, Document S1 available in

supplemental information). Positive controls, which are well-es-

tablished promoters such as the CMV and EF1a promoters, ex-

hibited strong enhancer activity compared with randomly scram-

bled sequences, confirming the efficacy of MPRA in detecting

gene regulatory activity (Figure 1C).

We then compared the overlap of MPRA-active and MPRA-

inactive elements with the biochemically defined cis-regulatory
1.623 10�6, IN:MGE FDR = 4.853 10�7, AstroOligo FDR = 1.493 10�7, and Mic

progenitor cells (IPCs) FDR = 0.80, early excitatory neurons (earlyENs) FDR = 0

neurons (ulENs) FDR = 0.53, inhibitory neuronal progenitors (IN:Prog) FDR = 0.5

(IN:MGE) FDR = 0.36, astrocytes and oligodendrocytes (AstroOligo) FDR = 0.14,

(E) Overlap of MPRA-active and MPRA-inactive elements with different classes o

VNTR-Alus; ERV, endogenous retroviruses; LTRs, long terminal repeats.

(F) Chromatin accessibility of MPRA-active, active-Alu, and active-noAlu elemen

(G) Enrichment of MPRA-active, active-Alu, and active-noAlu elements in EPR

*FDR < 0.05. Two-sided Fisher’s exact test, OR > 1, MPRA-active elements FDR

FDR = 3.74 3 10�6. Error bars indicate 95% confidence intervals.

(H) Comparisons of motif content scores between MPRA-inactive, MPRA-activ

Fisher’s exact test. ***p < 2.2 3 10�16.

(I) TFBMs enriched within MPRA-active elements and their respective enrichm

Cumulative binomial test was used to calculate p values by HOMER.

See also Figure S1.
elements (CREs) of various cell types in the developing brain.11

Surprisingly,MPRA-active elementswere not enrichedwith brain

CREs compared with MPRA-inactive elements, with the excep-

tion of microglia (Figure 1D). Because MPRA on GWAS variants

associated with type 2 diabetes and blood pressure reported

enrichment ofMPRA-active elements inAlu repeats,12,13weeval-

uated whether the lack of overlap between MPRA-active ele-

ments and CREs could be attributed to transposable elements

with poor mappability due to their repetitive nature. Indeed, we

found that MPRA-active elements were strongly and selectively

enriched with Alu repeats among various types of transposable

elements (Figure 1E). Overlap with Alu repeats correlated with

the enhancer activity of MPRA-active elements (Figure S1D).

We stratified MPRA-active elements into two categories

based on their overlapwith Alu repeats: active-Alu, which display

a high degree (>50%) of overlap, and active-noAlu, which display

low or no overlap (Document S1). Active-noAlu elements were

overrepresented with CREs in every cell type of the developing

brain, while active-Alu elements were depleted with brain

CREs compared with MPRA-inactive elements (Figure 1D).

Chromatin accessibility of all three classes of active elements

was strongest in upper-layer excitatory neurons (Figure 1F).

A recent study has shown that up to 90%of enhancer-promoter

RNA interactions (EPRIs) harbor Alu repeats in the enhancer

RNA.14 Therefore, we assessed whether active-Alu elements are

enriched in EPRIs,14 which effectively capture enhancers with

Alu repeats. All active elements, including active-Alu elements,

were enriched in EPRIs compared with MPRA-inactive elements

(Figure 1G), suggesting that active-Alu elements, which were pre-

viously understudied by the traditional definition of enhancers,

may play a prominent role in driving gene regulation.

Next, we investigated whether the enhancer activity of MPRA-

active elements is mediated by transcription factors (TFs) by

quantifying the abundance of TF motifs within a given element

(TF motif content scores). MPRA-active elements showed a

higher motif content score than MPRA-inactive elements, sug-

gesting that differential MPRA activity on an elemental level is

mediated by TF binding (Figure 1H). Furthermore, active-Alu el-

ements exhibited a higher motif content score than active-noAlu

elements, suggesting that Alu repeats may drive gene regulation

via enhanced TF binding.

We explored TFs with binding motifs (TFBMs) enriched in

MPRA-active elements. TFs with robust expression in HNPs
roglia FDR = 1.853 10�8. Active-Alu; radial glia (RG) FDR = 0.28, intermediate

.85, deep layer excitatory neurons (dlENs) FDR = 0.45, upper-layer excitatory

5, CGE-derived interneurons (IN:CGE) FDR = 0.79, MGE-derived interneurons

Microglia FDR = 0.0014. Error bars indicate 95% confidence intervals.

f transposable elements. L1, long interspersed nuclear element 1; SVA, SINE-

ts in different cell types in the developing cortex.

Is in HNPs. p values and OR calculated by two-sided Fisher’s exact test.

= 3.703 10�8, active-Alu elements FDR = 1.913 10�4, active-noAlu elements

e, active-Alu, and active-noAlu elements. p values calculated by two-sided

ent, percent of sequence overlap, and their normalized RNA count in HNPs.
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Figure 2. mDisorder3 emVars display chromatin accessibility in broader cell types and alter binding motifs of TFs with higher network

connectivity

(A) Top, the number of emVars (pink) out of other tested variants (gray) per locus. Bottom, MPRA-tested cross-disorder GWAS loci as defined by the index SNP

and their association with individual psychiatric disorders. If a locus is associatedwith a disorder (m-value > 0.9 as reported by the original cross-disorder paper5),

the box is marked cyan; otherwise, it is marked yellow.

(legend continued on next page)
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were enriched for MPRA-active elements (Figure 1I). Active-Alu

elements were enriched with the same TFs as MPRA-active ele-

ments (Figure S1E), indicating that the elevated TF motif content

score of MPRA-active elements was largely driven by active-Alu

elements (Figure 1H). By contrast, active-noAlu elements were

enriched with LEF1, a TF that drives the neuronal proliferation

and differentiation,15 and EGR1, a TF that regulates synaptic

plasticity16 (Figure S1F).

Allelic regulatory activity of psychiatric risk variants
We conducted variant-level analysis to identify variants with dif-

ferential allelic regulatory effects. Of the 17,841 cross-disorder

risk variants tested, 13,311 variants passed quality control (Fig-

ure S1A; STAR Methods), spanning all of the tested 136 cross-

disorder loci; Figure S2A). Of these 13,311 variants, 683 variants

(hereafter referred to as expression-modulating variants or em-

Vars) across 103 loci showed significant allelic regulatory activity

within the enhancer context (Figures 1A, 1B, 2A, 2B, S2A, and

S2B; Table S1, Document S1). We also definedMPRA-nonallelic

variants as those with no significant allelic regulatory activity

(Document S1).

On average, we detected 6.6 emVars per locus (median = 4,

Figure 2A and 2C). Given that we tested an average of 98 variants

per locus (median = 66.5), this result shows that MPRA greatly

refines the potentially causal GWAS variants per locus. emVars

did not display a strong directional bias, as risk alleles had a

�54% increase and �46% decrease in expression of the re-

porter gene (Figure 2B, bottom).

It is sometimes assumed that the GWAS index SNP (the SNP

with the smallest p value in a GWS locus) is more likely to be

causal compared with the other variants in the locus. To test

this assumption, we evaluated the proportion of GWAS index

SNPs that were emVars. Out of the 100 GWAS index SNPs

tested in our MPRA, only 3 were identified as emVars, recapitu-

lating our previous findings that not all index SNPs exhibit

detectable regulatory function in MPRA.17

We next surveyed the relationship between GWAS summary

statistics and MPRA-measured regulatory activity. Similar to

our previous finding,17 GWAS p values did not differentiate be-

tween emVars and MPRA-nonallelic variants (Figure S2C). By

contrast, there was a significant difference in GWAS effect sizes

(|GWAS log2OR|) between emVars and MPRA-nonallelic vari-
(B) Volcano plot displaying allelic regulatory activity of all tested variants. The nu

graph. Variants tested by CROP-seq (see Figure 3Fand 3H) are labeled.

(C) The number of all MPRA-tested variants (top, gray) and emVars (bottom, pin

(D) Heatmap of chromatin accessibility across excitatory neuronal differentiatio

heatmap, each variant’s association with different disorders is indicated by color-c

MDD, yellow green; BIP, green; SCZ, purple. For mDisorder3 emVars, the mDisor

the darkness of the bar representing the extent of association. Heatmaps in the

emVars across neuronal differentiation stages, including RG, IPC, earlyEN, dlEN,

depicted, indicating whether the variant cluster exhibits chromatin accessibility i

(E) TFs whose motifs are altered by emVars and their expression levels in HNPs. T

altered by emVars in comparison to background SNPs. The colors of the circles re

the plot represent the normalized TF expression level in HNPs.

(F) PPIs of TFs with motifs altered by mDisorder1 (top) and mDisorder3 (bottom

STRING database. PPI p values depict the enrichment of PPIs compared with

represent TFs.

See also Figures S2 and S3.
ants, suggesting that GWAS variants with larger effect sizes

are more likely to have regulatory function (Figure S2D). How-

ever, there was no significant correlation between MPRA-allelic

activity (|MPRA log2FC|) and GWAS effect sizes (Pearson corre-

lation coefficient r = –0.007, p = 0.45).

We further categorized emVars into those located in disor-

der-specific (mDisorder1: loci/variants are associated with

only one disorder) and pleiotropic (mDisorder3: loci/variants

are associated with 3 or more disorders) loci (Figures 1B and

2A; Document S1). Pleiotropy did not appear to affect the per-

centage of emVars, with both mDisorder1 and mDisorder3 loci

having �5% emVars (Figure S2E). Similarly, the number of em-

Vars per locus did not differ between mDisorder1 and mDisor-

der3 (Figure S2F) but showed amoderate, albeit not significant,

increase when the locus was associated with more psychiatric

disorders (Figure S2G). The percentage of emVars slightly var-

ied across different disorders, with OCD having the highest per-

centage (7.1%), while AUT had the lowest percentage (2.7%)

(Figure S2H).

Epigenetic characterization of emVars
To gain insight into the epigenetic mechanisms driving variant

regulatory activity, we interrogated epigenetic characteristics

of emVars. Additionally, we explored a potential difference in

epigenetic properties associated with pleiotropy by comparing

mDisorder1 emVars with mDisorder3 emVars.

Previous research has shown that many GWAS variants are

located within accessible chromatin regions.18–20 Recapitulating

previous research, we observed increased chromatin accessi-

bility in the developing brain for emVars compared with the

genomic background SNPs (see STAR Methods for how they

were defined; Figure S2I). When examining distinct brain cell

types, emVars showed higher chromatin accessibility in the

excitatory neuronal lineage, regardless of their pleiotropy (Fig-

ure S2I–S2K). We further investigated whether mDisorder1 and

mDisorder3 emVars affect different developmental stages

across excitatory neuronal lineages. BothmDisorder1 andmDis-

order3 emVars showed varied chromatin accessibility within the

excitatory neuronal lineage (Figure 2D). However, mDisorder1

emVars displayed more confined chromatin accessibility within

a specific cell type, while mDisorder3 emVars had broader

accessibility spanning various cell types within the excitatory
mber of upregulating and downregulating emVars is displayed below in a bar

k) per locus. The violin plot of the emVars is zoomed in at the bottom.

n for mDisorder1 (left) and mDisorder3 (right) emVars. On the left side of the

oded bars: OCD, dark blue; ANO, light blue; TS, red; ADD, orange; AUT, yellow;

der bar indicates the number of disorders each variant is associated with, with

middle depict scaled accessibility for individual mDisorder1 and mDisorder3

and ulEN. To the right of the heatmap, the cell span for each variant cluster is

n only one (1) cell type or across multiple (>1) cell types.

he size of the circles represents OR, indicating the degree to which TFBMs are

present the number of emVars altering the TFBM. Colored squares underneath

) emVars. Average node degrees and p values (PPI p) were obtained from the

a random selection of nodes. Colors are randomly assigned to nodes, which

Cell 188, 1409–1424, March 6, 2025 1413
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neuronal lineage (Figure 2D and S2L), suggesting that mDisor-

der3 emVars may exert their biological impact across multiple

excitatory neuronal lineages.

Genetic variations can alter TFBMs, affecting binding affinity

and the expression of associated downstream target genes. To

investigate the mechanism by which emVars exert allelic effects,

we identified TFBMs that are more likely to be altered by emVars

than by genomic background17 (hereafter referred to as emVar

TFs, Table S2). In total, we identified 104 emVar TFs (p < 0.05,

two-sided Fisher’s exact test, 39 TFs with FDR < 0.05), which dis-

played detectable expression levels in HNPs (Figure 2E). Four em-

Var TFs (THRA,RARA, TBX21, andP73) overlapwith TFs enriched

in MPRA-active elements, suggesting that these TFs may be

involved in both enhancer and allelic activity. To identify transcrip-

tional regulators associated with pleiotropy in psychiatric disor-

ders, we separately identified TFBMs altered by mDisorder1 and

mDisorder3 emVars (hereafter referred to as mDisorder1 TFs

and mDisorder3 TFs). We detected 35 mDisorder1 TFs (p < 0.05,

two-sided Fisher’s exact test, 3 TFs with FDR < 0.05, Figure S2M)

and 87mDisorder3TFs (p<0.05, two-sided Fisher’s exact test, 24

with FDR < 0.05, Figure S2N) that are expressed in HNPs.

Since TFs often act cooperatively,21 we investigated protein-

protein interactions (PPIs) between the emVar TFs and observed

that mDisorder3 TFs displayed higher protein-protein connectiv-

ity than mDisorder1 TFs, indicated by the average node degree

(Figure 2F and S2O). This suggests that TFs associated withmul-

tiple psychiatric disorders work in concert and cooperate within

more interconnected pathways. For example, mDisorder3 TFs

include retinoic acid receptors and estrogen receptors (Fig-

ure S2N, i.e., RARB, RARG, RARA, RXRB, RXRG, and ESR1),

which are responsible for a broad spectrum of neurodevelop-

mental processes, including neural proliferation, differentiation,

regeneration, and synaptic plasticity.22,23

Comparisons between statistical and experimental fine-
mapping
We compared emVars against probabilistic assessments of

variants by statistical fine-mapping algorithms, including

FINEMAP,24 Sum of Single Effects (SuSiE),25 and CAusal Vari-

ants Identification in Associated Regions (CAVIAR)26

(Table S3). Fine-mapping algorithms are used to calculate model

probabilities over a set of causal configurations (i.e., sets of var-

iants sufficient for explaining the observed GWAS summary sta-

tistics) in order to prioritize variants for functional validation.

However, statistical fine-mapping results do not always align

with functional validation results,17 and it is difficult to pinpoint

which fine-mapping algorithm best predicts the causal set due

to the lack of benchmark data. We empirically tested all variants

with association significance below a certain threshold (p < 1 3

10�5) within a GWS locus, allowing us to systematically compare

our results to those from fine-mapping predictions.

We first assessed the concordance between the three fine-

mapping algorithms (Figures S3A and S3B). A comparison of

credible sets across loci showed that FINEMAP had the smallest

number of total variants in the 95% causal confidence sets (with

5,750 variants), whereas CAVIAR had the most (with 7,050 vari-

ants). Notably, the three algorithms had a high degree of overlap,

such that all FINEMAP-identified variants were also found in
1414 Cell 188, 1409–1424, March 6, 2025
SuSiE, and all additional SuSiE-identified variants were also

found in CAVIAR (Figure S3A). We also observed high correlation

in the posterior inclusion probabilities (PIPs) from each algorithm

(Figure S3B).

We then overlapped emVars with credible sets generated by

each fine-mapping algorithm (Figure S3A). We identified 6,805

variants that were in a credible set from FINEMAP, SuSiE, and

CAVIAR but were not emVars. These variants were identified

as participating in causal configurations by all three fine-map-

ping algorithms but did not show regulatory activity in our func-

tional assay.We also identified 438 emVars that did not appear in

a credible set for any fine-mapping algorithm (nonFM-emVars)

and 198 emVars that appeared in a credible set for all three

fine-mapping algorithms (FM-emVars, Figure 1B; Document

S1). We focus on these two groups in later analyses. Based on

these results, we chose to compare our emVars with SuSiE, a

state-of-the-art fine-mapping algorithm.25

We explored whether PIPs could differentiate between em-

Vars and MPRA-nonallelic variants. SuSiE PIPs showed no sig-

nificant difference between the two groups (Figure S3C). Since

the size and PIP distribution of credible sets vary with the linkage

disequilibrium (LD) complexity of GWS loci, we hypothesized

that this lack of distinction might be attributed to GWS loci

with complex LD, which typically result in larger credible sets

with smaller PIPs. Therefore, we stratified GWS loci based on

their credible set sizes, where smaller credible set sizes indicate

SuSiE’s ability to identify fewer putative causal variants with

higher PIPs. Comparing the portion of variants exceeding a spe-

cific PIP threshold (e.g., PIP > 0.1) between emVars and MPRA-

nonallelic variants across different credible set sizes, we found

that emVars were more likely to surpass the threshold only in

loci with smaller credible sets (Figure S3D). This suggests that

both MPRA and statistical fine-mapping yield comparable re-

sults in GWS loci with less complex LD where fine-mapping

may effectively discern causal variants.

We next examined whether variants that were both fine-map-

ped and expression-modulating were more likely to confer regu-

latory function by comparing FM-emVars to nonFM-emVars.

There was no difference in significance (measured by p value)

and effect size (measured by log2FC) in MPRA-measured allelic

activity between FM-emVars and nonFM-emVars (Figure S3E

and S3F). We again applied progressive thresholding based on

the size of the credible set and compared the distributions of

MPRA-allelic p values and effect sizes between FM-emVars

and nonFM-emVars present in each credible set (Figure S3E

and S3F). For small credible sets, FM-emVars showed higher

significance and effect sizes for allelic regulatory activity (Fig-

ure S3E and S3F). The lack of significance in the smallest cred-

ible sets can be attributed to the small number of SNPs present

in those groups, which limits our power. Overall, these results

suggest that statistical fine-mapping is effective for loci with

small credible sets and simple LD patterns but may struggle

for loci with complex LD and larger credible sets.

emVar overlap with eQTLs
We overlapped emVars with MetaBrain expression quantitative

trait loci (hereafter referred to as meta-eQTL, Table S4), a large-

scale eQTL resource that encompasses variant-gene expression
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Figure 3. Linking emVars to putative target genes via functional genomics approaches

(A) Overlap between meta-eQTL and emVars. emVars, percent of emVars in total (pink); eQTL, percent of emVars that overlap with eQTLs (orange); IDE, percent

of eQTL-overlapping emVars that display identical direction of expression (green); Coloc, percent of loci where IDE variants show colocalization with cross-

disorder GWS loci (blue).

(B) Overlap of meta-eQTL with MPRA-nonallelic variants (left) and background SNPs (right).

(C) The number of IDE variants detected in each cell type within the cell-type-specific (top) and neuronal subtype-specific (bottom) eQTL resources. Excitatory

neurons (ENs), inhibitory neurons (INs), oligodendrocytes (Oligo), oligodendrocyte precursor cells (OPCs), microglia (Micro), astrocytes (Astro), layer 2–3

excitatory neurons (L2–3), layer 4 neurons (L4), layer 5 neurons (L5), layer 6 neurons (L6), lysosome-associated membrane protein 5-positive interneurons

(LAMP5), somatostatin-positive interneurons (SST), vasoactive intestinal polypeptide-positive interneurons (VIP), chandelier cells (ChC).

(D) A schematic showing how emVars were mapped to their putative target genes.

(E) Left, the number of emVars mapped per gene. Right, the number of emVar genes mapped per locus.

(F) GO analysis on emVar genes.

(G) emVar genes are enriched for genes affected by rare PTVs in AUT and DD. Local background genes do not show such enrichment for both AUT and DD risk

genes. p values calculated by two-sided Fisher’s exact test. Error bars indicate 95% confidence intervals.

See also Figure S3.
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relationships from 6,532 human cortical samples.27 Of the em-

Vars detected in our study, 62% showed eQTL signals in meta-

eQTL. Among these overlapping variants, 74% showed an

identical direction of effect (IDE) of alleles (i.e., the risk allele is

associated with increased gene expression in both MPRA and

eQTLs, or vice versa). Of these IDE variants, 79% showed coloc-
alization between cross-disorder GWAS and meta-eQTL (coloc;

Figure 3A).

To assess whether the overlap between meta-eQTL and em-

Vars is stronger than what is expected by chance, we measured

the eQTL overlap with MPRA-nonallelic and background vari-

ants. Of the MPRA-nonallelic variants, 48% showed eQTL
Cell 188, 1409–1424, March 6, 2025 1415
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signals, and among these, 69% showed IDE (Figure 3B, left). Of

the background variants, only 26% exhibited eQTL signal over-

lap (Figure 3B, right). Together, emVars display higher eQTL

overlap compared with MPRA-nonallelic variants (p = 3.5 3

10�12, two-sided Fisher’s exact test) and background variants

(p = 1.4 3 10�87, two-sided Fisher’s exact test).

Because meta-eQTL are derived from brain homogenate and

lack cellular resolution, we also leveraged cell-type-specific

eQTL resources to decipher cell-type-specific allelic activity of

emVars (Figure 3C). We first compared emVars with cell-type-

specific eQTLs from Bryois et al.28 Among the tested cell types,

the largest number of IDE variants was detected in excitatory

neurons (ENs; Figure 3C; Table S4), further supporting the

epigenetic enrichment of emVars in excitatory neuronal

CREs (Figure S2I). Since neurons can be further grouped into

neuronal subtypes with different chromatin and transcriptomic

architectures,29–31 we also compared emVarswith neuronal sub-

type-specific eQTLs from the PsychENCODE consortium32 (Fig-

ure 3C). The largest number of IDE variants was detected in layer

2–3 ENs (L2–3), consistent with our findings that emVars have

the strongest chromatin accessibility in upper-layer ENs

(Figure S2I).

We next evaluated whether pleiotropic variants differ from dis-

order-specific variants with respect to their overlap with eQTLs.

We compared mDisorder1 and mDisorder3 emVars with meta-

eQTL,27 finding that they did not substantially differ in terms of

eQTL overlap (67% and 64%, respectively) or percentage of var-

iants that are both IDE and coloc (70% and 65%, respectively,

Figure S4A). We also tested the hypothesis that pleiotropic var-

iants may exert their regulatory effects via a greater number of

eGenes or across a broader range of cell types. The number of

eGenes linked to mDisorder1 and mDisorder3 emVars did not

significantly differ for each eQTL dataset (Figure S4B), indicating

that pleiotropic effects of variants are not mediated by the num-

ber of genes for which expression levels are associated with the

variants. Also, in both cell-type-specific eQTL datasets, there

was no significant difference in the number of cell types in which

eQTLs shared IDE betweenmDisorder1 andmDisorder3 emVars

(Figure S4C). In summary, mDisorder1 and mDisorder3 emVars

do not differ by the eQTL overlap, the number of associated

eGenes, and the cell types in which eQTLs are observed.

Linking emVars to their putative target genes
To further understand the functional consequence of emVars, we

assigned them to their candidate target genes, referred to as em-

Var genes, using a three-tiered approach (Figure 3D). First, given

the substantial overlap between emVars and meta-eQTL (Fig-

ure 3A), we used eGenes associated with emVars. Second, we

mapped emVars to their respective target genes, building upon

our previous study that demonstrated the ability of the activity-

by-contact (ABC) model to connect MPRA-validated variants

to their putative target genes.17 Third, we leveraged long-range

chromatin interactions, since the ABCmodel prioritizes proximal

target genes. In total, we identified 488 emVar genes (Table S4).

On average, �3 SNPs were mapped to each gene (Figure 3E,

left), and �5 genes were mapped per locus (Figure 3E, right).

Similar to our observations with eGenes (Figure S4B), the num-

ber of emVar genes did not differ between mDisorder1 and
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mDisorder3 loci across different gene mapping approaches

(Figure S4D).

We next performed Gene Ontology (GO) analysis using emVar

genes to explore their biological function. emVar genes were en-

riched for genes that encode synaptic proteins and transcrip-

tional regulators, which is consistent with the growing body of

evidence that those biological pathways are involved with

various psychiatric disorders8,33–35 (Figure 3F). To mitigate a po-

tential bias in GO enrichment resulting from the biological prop-

erties of cross-disorder loci, we defined local background genes

as those located nearby cross-disorder loci. While these local

background genes showed comparable expression levels to

emVar genes in HNPs (Figure S4E), their GO enrichment differed

vastly from that of emVar genes (Figure S4F).

In addition, emVar genes were significantly enriched for genes

that harbor an excess of rare protein-truncating variants (PTVs)

in individuals with AUT36 and developmental disorders (DDs)37

(Figure 3G). This finding strengthens the previously reported mo-

lecular convergence between rare and common genetic varia-

tions in neurodevelopmental and psychiatric disorders.8,38 This

enrichment was not due to the characteristics of genes nearby

cross-disorder loci, as we did not observe such enrichment us-

ing local background genes (Figure 3G).

Validation of emVar-gene relationships using CRISPR
perturbation
Next, we sought to functionally validate the predictive power of

the ABC model for establishing variant-gene relationships.

To functionally validate emVar-gene relationships, we used

CRISPR droplet sequencing (CROP-seq)39 in human induced

pluripotent stem cell (hiPSC)-derived neurons that constitutively

express dCas9-KRAB and an inducible NGN2 cassette.40

CROP-seq allows simultaneous perturbation of multiple variants

at single-cell resolution in a high-throughput fashion (Figure 4A).

We generated a homogeneous population of mature glutamater-

gic neurons, evidenced by transcriptomic profiling of single-cell

RNA sequencing (scRNA-seq) data as well as immunofluores-

cence staining (Figure S5A and S5B).

We selected an emVar, rs301804, as it exhibited the highest

significance (allelic FDR = 9.07 3 10�68) and effect size (allelic

log2FC = �5.17) across all variants tested in our MPRA (Fig-

ure 2B). This variant is located in the RERE locus (Figure 4B)

and is associated with two neuropsychiatric disorders (MDD

and TS). The ABC model linked rs301804 to RERE, which is a

gene implicated in positively regulating retinoic acid signaling

and linked to neurodevelopmental defects, hypotonia, seizures,

and diverse organ anomalies.41

CROP-seq targeting of rs301804 led to significant downregu-

lation ofRERE (negative binomial generalized linearmodel [GLM]

coefficient = �0.129; FDR = 2.423 10�5), while other surround-

ing genes were not significantly affected (Figure 4C; Table S5).

This is intriguing because the nearest promoter to rs301804 is

not RERE but SLC45A1, underscoring the importance of predic-

tive models in elucidating complex gene regulatory networks.

Additionally, we selected the DCC locus because it was

featured as having the highest pleiotropic association across

all eight psychiatric disorders5 (Figure 4D). Within this locus,

the emVar rs4513167 exhibited the highest significance (allelic
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Figure 4. CRISPR validation of variant-gene relationships

(A) A schematic depicting the process of CROP-seq gRNA library generation, lentiviral packaging, and delivery to hiPSC-derived neurons constitutively ex-

pressing dCas9-KRAB.

(B) Locus plot for emVar rs301804 in the RERE locus. Top panel shows GWAS association statistics of the emVars (pink) and GWS variants (lime green). Middle

panel shows significance of MPRA-allelic activity of rs301804 (pink). Bottom panel shows genes within a 900 kb window around the target variant, with RERE

(pink) as a predicted target gene based on the ABC model (variant-gene relationship displayed with a gray loop). Gray bars highlight variant and gene pro-

moter locations.

(C) Lollipop plot shows perturbation at the rs301804 target site was specific to RERE in comparison to nearby genes. Signed �log10p [Signed �log10p = �log10
pleft-tailed3 sign(GLMcoef)], where pleft-tailed and GLMcoef represent the left-tailed p value andGLM coefficient of a given variant-gene pair, respectively, was plotted for

each gene target in theRERE locus to represent both the direction of the effect aswell as significance. The gene targetsmeeting FDR<0.05 are denoted in pink, while

those that do not meet significance are denoted in gray.

(D) Locus plot for emVar rs4513167 in the DCC locus. Top panel shows GWAS association statistics of the emVars (pink) and GWS variants (lime green). Middle

panel shows significance of MPRA-allelic activity of rs4513167 (pink). Bottom panel shows genes within a 1.7 Mb window around the target variant, with DCC

(pink) as a predicted target gene based on the ABC model (variant-gene relationship displayed with a gray loop). Gray bars highlight variant and gene promoter

locations.

(E) Lollipop plot shows perturbation at the rs4513167 target site was specific to DCC in comparison to nearby genes. Signed �log10p was plotted for each gene

target in the DCC locus to represent both the direction of the effect as well as significance. The gene targets meeting FDR < 0.05 are denoted in pink, while those

that do not meet significance are denoted in gray.

See also Figure S5.
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FDR = 2.43 3 10�34) and effect size (allelic log2FC = �1.27) and

was thus selected for functional validation (Figure 2B). The ABC

model also suggested a relationship between rs4513167 and

DCC, which encodes a receptor for Netrin-1, known for its

involvement in axon guidance and neurodevelopment.42 Intro-

ducing guide RNAs (gRNAs) targeting the rs4513167 region re-

sulted in selective and significant downregulation of DCC (GLM

coefficient = �0.261; FDR = 1.213 10�2), while other surround-

ing genes were not significantly affected (Figure 4E; Table S5).

Compared with the RERE locus, the DCC locus is relatively

gene-poor. DCC spans over 1 Mb, and the second-nearest

gene to rs4513167 lies �990 kb away. To assess the specificity

of the association between rs4513167 and DCC, we conducted

functional validation on three additional variants (rs8089270,

rs6508210, and rs4614799) in the locus. Among these three var-

iants, rs4614799 was an emVar with the second-highest MPRA-

allelic (log2FC = �0.85) and element (log2FC = 0.50) effect sizes

in the locus (Figure S5C). By contrast, rs8089270 and rs6508210

exhibited differential allelic activity (rs8089270, FDR = 1.15 3

10�2; rs6508210, FDR = 1.62 3 10�3), but not element-level
enhancer activity (rs8089270, FDR = 0.903; rs6508210, FDR =

0.394). Notably, CRISPR-mediated perturbation of rs4614799

(emVar) resulted in significant downregulation of DCC (FDR =

0.040, GLM coefficient = �0.16), whereas neither rs8089270

nor rs6508210 significantly affected DCC expression (Fig-

ure S5D; Table S5). Again, the observed regulatory effects of var-

iants could not be solely attributed to distance, as rs8089270

was the closest to the DCC promoter. Instead, the regulatory

effect sizes of variants corresponded to the element-level

enhancer activity, as measured by MPRA (Figure S5E). These

findings suggest that not all variants within the DCC locus have

gene regulatory functions, emphasizing the importance of

modeling variant effects on gene regulation by incorporating

both variant-level allelic activity and element-level enhancer

activity.

Differences between pleiotropic and disorder-specific
genes
We investigated whether emVar genes are engaged in distinct

biological processes between pleiotropic and disorder-specific
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loci by comparing mDisorder1 genes (143 genes mapped to

mDisorder1 emVars) against mDisorder3 genes (182 genes

mapped to mDisorder3 emVars, Table S4). mDisorder1 genes

were enriched for biological processes encompassing histone

deacetylation, pyrimidine metabolism, telomere function, and

cell cycles (Figure S6A, top). mDisorder3 genes were enriched

for biological processes that involve FGFR1 signaling (Fig-

ure S6A, bottom).

Given that mDisorder1 and mDisorder3 emVars showed

distinct chromatin accessibility signatures across the neural line-

age (Figure 2D), we evaluated whether their target genes are also

engaged in different stages of neural differentiation. Consistent

with what was observed at the variant level, mDisorder1 gene

expression was more likely to be restricted within a specific

cell type, while mDisorder3 gene expression spanned multiple

cell types during neural differentiation (Figures 5A and 5B).

Because distinct developmental expression trajectories be-

tween genes mapped to mDisorder1 and mDisorder3 loci were

previously reported,5 we examined cortical expression profiles43

of mDisorder1 and mDisorder3 genes across developmental

epochs. We recapitulated the previous finding that pleiotropic

genes show peak expression during mid-gestation, while disor-

der-specific genes show peak expression during the first

trimester5 (Figure S6B).

We next compared mutation intolerance (measured by loss-

of-function observed/expected upper bound fraction [LOEUF]

score) between mDisorder1 and mDisorder3 genes. mDisorder3

genes showed highermutation intolerance comparedwithmDis-

order1 genes, suggesting that pleiotropic variants may influence

regulation of mutation-intolerant genes (Figure 5C).

Finally, we evaluated the hypothesis that hub genes, which

exhibit high connectivity with other genes in either co-expression

or PPI networks, can account for pleiotropy by participating in

diverse biological functions through their interaction partners

within the network. We first compared kME values, which repre-

sent the centrality of a gene within its associated co-expression

network,33 between mDisorder1 and mDisorder3 genes. We did

not observe any significant difference between the two groups

(Figure S6C). We next examined the connectivity of proteins

encoded by mDisorder1 and mDisorder3 genes in the PPI

networks. Notably, proteins encoded by mDisorder3 genes

demonstrated higher connectivity than proteins encoded by

mDisorder1 genes in PPI networks (Figures 5D and 5E).

CRISPR perturbation of pleiotropic vs. disorder-specific
genes
To further explore molecular mechanisms underlying pleiotropy,

we employed CROP-seq on two genesmapped to either a pleio-

tropic (ANP32E) or a disorder-specific (KMT5A) locus (Figure 6A).

ANP32E is mapped to emVars via the ABC model, and there

were no ANP32E eQTLs overlapping with emVars (Figure 6B,

left). Meanwhile, KMT5A is mapped to emVars via both meta-

eQTL and the ABC model (Figure 6B, right). ANP32E encodes

a histone chaperone protein that binds to the histone variant

H2A.Z and suppresses the accumulation of H2A.Z.44 Suppres-

sion of H2A.Z accumulation reduces chromatin accessibility,

thereby making ANP32E a negative regulator of chromatin

accessibility.44 KMT5A (also known as SETD8) encodes a his-
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tone methyltransferase that methylates the lysine-20 of histone

H4 (H4K20me).45 H4K20me has been linked to both transcrip-

tional activation and repression.46

We sought to determinewhich downstream targets, cell types,

and networks are affected by perturbing these two transcrip-

tional regulators. We inserted gRNAs targeting the coding

sequence of mouse Anp32e and Kmt5a (gRNA sequences avail-

able in Table S6) into the lentiviral CROP-seq vector39 and in-

jected the gRNA lenti-library into the lateral ventricles of the

brains of neonatal Cas9 transgenic mice47 (Figure 6A). After

two weeks, we dissociated single cells from the neocortex,

sorted for cells expressing the CROP-seq virus using fluores-

cence-activated cell sorting (FACS), and performed scRNA-

seq (Figure 6A). A total of 83,386 neocortical cells from ten

experimental batches were used for differential expression anal-

ysis. Anp32e and Kmt5a perturbation derived 46 and 244 differ-

entially expressed genes (DEGs), respectively (Table S5), whose

overlap was minimal (Figure 6C).

Anp32e DEGs were most highly expressed in both excitatory

and inhibitory neurons in the mouse brain (Figure 6D, middle

top), and corresponding human ortholog genes were also highly

expressed in ENs in the human fetal brain48 (Figure 6D, middle

bottom). By contrast, Kmt5a DEGs were most highly expressed

in glial cells in both mouse (Figure 6D, right top) and human fetal

brains48 (Figure 6D, right bottom). In accordance with neuron-

biased expression, Anp32e DEGs were enriched in GO terms

related to protein complexes involved in synaptic function (Fig-

ure 6E, top), while glia-enriched Kmt5a DEGs were annotated

with GO terms related to cilium (Figure 6E, bottom).

We also examined whether Anp32e and Kmt5a DEGs were

dysregulated in the postmortem brains of individuals with

SCZ49 (Figure 6F). Human orthologs of Anp32e DEGs showed

reduced expression in multiple neuronal subtypes in SCZ sam-

ples (Figure 6F), whereas Kmt5a DEGs showed increased

expression in a smaller subset of cell types, including neurons

and astrocytes (Figure 6F). Lastly, Anp32e DEGs exhibited

higher node degree (Figure 6G) and connectivity (Figure 6H) in

PPI networks compared with Kmt5a DEGs, even though the

number of DEGs is larger for Kmt5a perturbation (Figure 6C).

This is consistent with our observation that the number of map-

ped target genes does not explain pleiotropy (Figure S4D).

Overall, our analyses of transcriptomic architecture upon

CRISPR perturbation suggest a mechanism by which a pleio-

tropic gene’s effect may propagate through complex PPI net-

works and expression across diverse neuronal cells. This is

consistent with the finding that mDisorder3 variants show chro-

matin accessibility across broader excitatory neuronal lineages

(Figure 2D) and that mDisorder3 genes exhibit higher network

connectivity (Figure 5D and 5E).

DISCUSSION

We functionally validated cross-disorder GWAS loci, identifying

active elements and variants with gene regulatory activity. We

assigned emVars to their putative target genes using eQTLs

and chromatin architecture. The relationships between a few

emVars and their predicted target genes were further confirmed

via CROP-seq in hiPSC-derived neurons. We found that
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Figure 5. mDisorder1 and mDisorder3 genes differ in expression patterns and network connectivity

(A) mDisorder1 (left) andmDisorder3 (right) gene expression across neuronal differentiation. On the left side of the heatmap, each gene’s association with different

disorders is indicated by color-coded bars: OCD, dark blue; ANO, light blue; TS, red; ADD, orange; AUT, yellow; MDD, yellow green; BIP, green; SCZ, purple. For

mDisorder3 genes, the mDisorder bar indicates the number of disorders with which each gene is associated, with the darkness of the bar representing the extent

of association. Heatmaps in the middle depict scaled expression values for individual mDisorder1 and mDisorder3 genes across neuronal differentiation stages.

To the right of the heatmap, the cell span for each gene cluster is depicted, indicating whether the gene cluster is expressed in only one (1) cell type or across

multiple (>1) cell types.

(B) Expression ofmDisorder3 genes ismore likely to encompassmultiple developmental stages in comparison tomDisorder1 genes, p= 0.003. p value calculated

by two-sided Fisher’s exact test.

(C) Distribution of LOEUF scores for mDisorder1 and mDisorder3 genes, p = 0.004. p value calculated by two-sided Wilcoxon rank sum test.

(D) Visualization of PPI networks for mDisorder1 (left) and mDisorder3 (right) genes. Average node degrees and p values were obtained from the STRING

database. PPI p values depict the enrichment of PPIs compared with a random selection of nodes. Colors are randomly assigned to nodes, which represent

mDisorder1 (left) and mDisorder 3 (right) genes.

(E) mDisorder3 genes are more highly connected in the PPI networks compared with mDisorder1 genes, p = 0.009. p value calculated by Anderson-Darling k-

Sample test.

See also Figure S6.

ll
Resource
upstream (TFs that bind to emVars) and downstream regulators

(putative target genes) of pleiotropic variants display higher con-

nectivity in PPI networks. Moreover, pleiotropic emVars and their

putative target genes demonstrated broader chromatin accessi-

bility and expression across excitatory neuronal lineages,

respectively. Finally, using CROP-seq in the mouse brain, we

found that perturbation of a pleiotropic gene can result in
DEGs with neuronal expression and a more interconnected PPI

network compared with the DEGs of a disorder-specific gene.

Together, understanding the properties and target genes of

pleiotropic variants unveils regulatory principles and molecular

mechanisms that may contribute to the shared comorbidities

in psychiatric disorders. We propose that pleiotropy in psychiat-

ric disorders may be mediated by three mechanisms: regulation
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Figure 6. CRISPR perturbations of Anp32e and Kmt5a lead to dysregulation of genes with different cell type expression and network

connectivity

(A) A CRISPR gRNA library targeting anmDisorder3 gene, Anp32e, and anmDisorder1 gene, Kmt5a, is injected into postnatal day 0 (P0) Cas9 transgenic mice. At

P14, neocortical cells are dissociated for scRNA-seq.

(B) Locus plots for ANP32E and KMT5A showing GWS variants, emVars, eQTLs overlapping with emVars, gene tracks, and variant-gene connectionsmapped by

the ABC model.

(C) Number of DEGs for Anp32e and Kmt5a CRISPR perturbations.

(D) Left, a uniform manifold approximation and projection (UMAP) plot displays the six major cell types in the mouse neocortex derived from CROP-seq. Middle,

Anp32e DEGs are highly expressed in neuronal cells in both mouse (top) and human fetal brain (bottom). Right, Kmt5a DEGs are highly expressed in glial cells in

both mouse (top) and human fetal brain (bottom). Radial glia (RG), intermediate progenitor cells (IPCs), neonatal excitatory neuron (nEN), excitatory neuron in the

prefrontal cortex (EN-PFC), excitatory neuron in the visual cortex (EN-V1), neonatal inhibitory neuron (nIN), inhibitory neuron in the caudal ganglionic eminence

(IN-CGE), inhibitory neuron in the medial ganglionic eminence (IN-MGE), oligodendrocyte precursor cell (OPC).

(legend continued on next page)
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of genes affectingmultiple stages of neural differentiation, higher

mutational constraint, and higher connectivity within the PPI

network. Gaining insights into the shared genetic underpinnings

of psychiatric disorders may offer potential therapeutic avenues

that can alleviate symptoms for multiple psychiatric disorders.

Limitations of the study
Because we conducted MPRA in an episomal construct,

variant regulatory activity is unaffected by chromatin architec-

ture or by local genomic regions beyond the tested 150-bp.

Furthermore, our MPRA design mainly prioritizes variants with

allelic enhancer activity and may not capture variants with

different regulatory effects, such as variants involved in alterna-

tive splicing. MPRA assesses the transcription of a reporter

gene and barcode but does not indicate the target gene(s)

affected by emVars. To establish these connections, we com-

bined MPRA with orthogonal data types, such as eQTLs,

Hi-C, and CRISPR-based perturbations. We acknowledge

that our CRISPR-based perturbation is limited to a few variants

and target genes. Further investigation is warranted to compre-

hensively identify variant-gene relationships and potential

mechanisms by which variants exert pleiotropic effects. It

is also important to note that mDisorder1 variants were

composed mainly of SCZ variants (�81.7%) due to the higher

statistical power of SCZ GWAS. Larger GWAS across different

psychiatric disorders will enable us to determine whether the

properties of mDisorder1 variants can be extrapolated to other

disorder-specific variants. Lastly, while our results suggest that

emVars are likely to include causal variants, it does not mean

that all emVars are truly ‘‘causal’’ for the disease. Endogenous

genome editing, combined with the analyses of downstream

biological and clinical phenotypes, would be required to deter-

mine the true causal relationship between a variant and the

disease.
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Any inquiries about the project, analytical results, or other information should

be directed to Hyejung Won (hyejung_won@med.unc.edu).

Materials availability

The modified CROP-seq vector is deposited in Addgene (Addgene:

ID#230938).

Data and code availability

MPRA sequencing and processed data are available on the Gene Expression

Omnibus (GEO) under accession number GEO: GSE244011. Raw and pro-

cessed scRNA-seq data from CROP-seq on hiPSC-derived neurons and

mice are available under GEO accession numbers GEO: GSE276947 and

GEO: GSE282731, respectively. Custom codes used to analyze MPRA data

are available on our GitHub page (https://github.com/thewonlab/

crossdisorder-MPRA).
(E) Top, top GO terms for Anp32e DEGs are related to synaptic functions. Botto

(F) Left, Anp32e DEGs are downregulated in a broad range of neuronal cell types

are upregulated in a smaller set of cell types.

(G) Anp32e DEGs show higher node degree in PPI network compared with Kmt5

database. PPI p values depict the enrichment of PPIs compared with a random

(H) Anp32eDEGs show higher PPI connectivity (number of connected edges per n
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Antibodies

AlexaFluor488 anti-mouse Thermo Fisher Cat#A-28175; RRID: AB_2536161

AlexaFluor647 anti-rabbit Thermo Fisher Cat#A-21245; RRID: AB_2535813

Mouse MAP2 primary antibody Millipore Sigma Cat#M1406; RRID: AB_477171

Mouse NF-H primary antibody Thermo Fisher Cat#MA1-2012; RRID: AB_347005

Mouse TUJ1 primary antibody Millipore Sigma Cat#T8578; RRID: AB_1841228

Rabbit PSD95 primary antibody Millipore Sigma Cat#P246; RRID: AB_260911

Rabbit SATB2 primary antibody abcam Cat#ab34735; RRID: AB_2301417

Bacterial and virus strains

CROPseq-tRFP-guideLib-invitro UNC Lenti-shRNA Core Facility N/A

CROPseq-tRFP-guideLib-invivo UNC Lenti-shRNA Core Facility N/A

Endura electrocompetent cells Lucigen Cat#60242-1

Chemicals, peptides, and recombinant proteins

AMPure XP Beads Beckman Coulter Cat#A63881

Avantor� Seradigm, Premium Grade Fetal

Bovine Serum (FBS)

Avantor Cat#97068-085

B-27� Plus Supplement (50X) Thermo Fisher Cat#A3582801

B-27� Supplement (50X), minus vitamin A Thermo Fisher Cat#12587010

BIT 9500 STEMCELL Cat#9500

Brain-Derived Neurotrophic Factor (BDNF) PeproTech Cat#450-02

BSA Millipore Sigma Cat#A9576

DAPI Millipore Sigma Cat#D9542

DMEM Thermo Fisher Cat#10313-039

DMEM/F12, HEPES Thermo Fisher Cat#11330-032

Doxycycline hydrochloride Sigma-Aldrich Cat#D3447-500MG

DPBS (without Ca2+ or Mg2+) 1X Corning Cat#20-031-CV

Epidermal growth factor (EGF) PeproTech Cat#AF-100-15

Fetal Bovine Serum (FBS) Corning Cat#35-015-CV

Fibroblast growth factors (FGF) PeproTech Cat#AF-100-15

Formaldehyde solution Millipore Sigma Cat#F1635

GlutaMax 100X Thermo Fisher Cat#35050-061

Hank’s Balanced Salt Solution (HBSS) 1X Corning Cat#21-022-CV

Heparin Sigma-Aldrich Cat#H3393-100KU

Hibernate A Low-Fluorescence BrainBits Cat#HALF500

Knockout DMEM Thermo Fisher Cat#10829-018

Knockout DMEM/F12 Thermo Fisher Cat#12660-012

KpnI-HF New England Biolabs (NEB) Cat#R3142S

Leukemia inhibitory factor (LIF) PeproTech Cat#300-05

Lipofectamine STEM Invitrogen Cat#STEM00015

Magnesium Chloride 1M Thermo Fisher Cat#AM9530G

Matrigel Matrix Corning Cat#356231

MluI-HF New England Biolabs (NEB) Cat#R3198S

Mouse Laminin Thermo Fisher Cat#23017-015

N2 Supplement 100X Thermo Fisher Cat#17502-048

NEAA (MEM Non-Essential Amino Acids) Thermo Fisher Cat#11140-050
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NEBNext 2X Q5 Hifi HS Master Mix New England Biolabs (NEB) Cat#M0453S

Neurobasal-A media Thermo Fisher Cat#10888022

Neurotrophin-3 (NT-3) PeproTech Cat#450-03

Nucleic acid transfection enhancer (NATE) InvivoGen Cat#lyec-nate

Papain Dissociation System Worthington Cat#LK003153

Platelet-derived growth factor (PDGF) PeproTech Cat#100-00AB

Poly-L-Ornithine Sigma-Aldrich Cat#P3655-100MG

Primocin Invitrogen Cat#ant-pm-2

ROCK inhibitor (Y-27632 2HCl) Selleck Chemicals Cat#S1049

ROCK inhibitor (Y-27632 2HCl) Tocris Cat#125410

SparQ beads VWR Cat#76302-834

SpeI-HF New England Biolabs (NEB) Cat#R3133S

StemFlex� Medium Thermo Fisher Cat#A3349401

StemPro Accutase Cell Dissociation Reagent Thermo Fisher Cat#A11105-01

SuperScript IV Reverse Transcriptase Invitrogen Cat#18090050

T7 DNA ligase New England Biolabs (NEB) Cat#M0318S

Trimethoprim (TMP) Sigma-Aldrich Cat#92131-1G

Triton Millipore Sigma Cat#T8787

Tween20 Milipore Sigma Cat#P2287

XbaI New England Biolabs (NEB) Cat#R0145S

Critical commercial assays

DNA Clean and Concentrator Kit-25 Zymo Research Cat#D4033

Qiagen Plasmid Maxi Kit-25 Qiagen Cat#12162

Qiagen Plasmid Mini Kit-25 Qiagen Cat#12123

Quick-DNA/RNA Miniprep Plus Kit Zymo Research Cat#D7003

Zymo DNA Clean and Concentrator Kit-5 Zymo Research Cat#D4033

Zymo Gel DNA Recovery Kit Zymo Research Cat#D4008

ZymoPURE II Plasmid Maxiprep Kit Zymo Research Cat#D4203

Deposited data

Code for analysis This Paper https://github.com/thewonlab/

crossdisorder-MPRA

CROP-seq in vitro (RT029 hiPSC-derived Neurons) This Paper GEO: GSE276947

CROP-seq in vivo This Paper GEO: GSE282731

Raw MPRA data This Paper GEO: GSE244011

Experimental models: Cell lines

Human neural progenitors (HNPs) Dr. Jason Stein’s lab, UNC-CH Donor #88

Human: i3N RT029 iPSC line (inducible

CRISPRi, inducible NGN2)

Dr. Martin Kampmann, UCSF40 RT029/SF2019-227

Experimental models: Organisms/strains

Mouse: Rosa26-Cas9 knockin on B6J Jackson RRID:IMSR_JAX:026179

Oligonucleotides

Sequences in Table S6 IDT N/A

Recombinant DNA

Plasmid: CROPseq-tRFP This Paper Addgene #230938

Plasmid: Donor_eGP2AP_RC Addgene Plasmid#133784

Plasmid: pMPRAdonor2 plasmid Addgene Plasmid#49353

Plasmid: pUC19 Thermo Fisher Cat#SD0061
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Software and algorithms

10x Genomics Cell Ranger v6.1.2 Zheng et al.50 https://www.10xgenomics.com/

support/software/cell-ranger/latest

10x Genomics Cell Ranger v7.0.0 Zheng et al.50 https://www.10xgenomics.com/

support/software/cell-ranger/latest

BioMart (version 2.58.0) Durinck et al.51 https://bioconductor.org/packages/

release/bioc/html/biomaRt.html

BWA (version 0.7.17-r1188) Li et al.52 https://bio-bwa.sourceforge.net/

CAVIAR (version 2.2) Hormozdiari et al.26 https://github.com/fhormoz/caviar

coloc (version 5.1.0.1) Giambartolomei et al.53 https://github.com/chr1swallace/coloc

FINEMAP (version 1.4.2) Benner et al.24 http://www.christianbenner.com/

garfield (version 2.0) Iotchkova et al.54 https://www.bioconductor.org/packages/

release/bioc/html/garfield.html

gprofiler2 (version 0.2.3) Kolberg et al.55 https://biit.cs.ut.ee/gprofiler/page/r

HOMER (version 4.10.4) Heinz et al.56 http://homer.ucsd.edu/homer/motif/

motifbreakR (version 2.10.2) Coetzee et al.57 https://bioconductor.org/packages/

release/bioc/html/motifbreakR.html

mpra (version 1.24.0) Myint et al.58 https://www.bioconductor.org/packages/

release/bioc/html/mpra.html

pheatmap (version 1.0.12) Kolde59 https://cran.r-project.org/web/

packages/pheatmap/index.html

PLINK2 (version 1.90b3.45) Chang et al.60 https://academic.oup.com/gigascience/

article/4/1/s13742-015-0047-8/2707533

RepeatMasker (version Open-3.0) Tarailo-Graovac et al.61 https://github.com/Dfam-consortium/

RepeatMasker

rtracklayer (version 1.54.0) Lawrence et al.62 https://bioconductor.org/packages/

release/bioc/html/rtracklayer.html

Seurat (version 5.0.2) Hao et al.63 https://satijalab.org/seurat/

singleR (version 2.2.0) Aran et al.64 https://github.com/SingleR-inc/SingleR

STRING (version 12.0) Szklarczyk et al.65 https://string-db.org/

susieR (version 0.12.35) Zou et al.25 https://github.com/stephenslab/susieR

UpsetR (version 1.4.0) Conway et al.66 https://github.com/hms-dbmi/UpSetR
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Protocols for HNP acquisition, generation, and cell culture were previously described by McAfee et al.17 Donor #88 (genetically male,

HNPs obtained at gestation week 14) was used for all experiments. Briefly, 800,000 cells were plated per 6-well plate pre-coated with

Poly-L-Ornithine (10 mg/ml; Sigma-Aldrich, cat. no. P3655-100MG) and laminin (5 mg/ml; Gibco, cat. no. 23017015). Cells were cultured

in Neurobasal-A media (Thermo Fisher, cat. no. 10888022) supplemented with primocin (100 mg/ml; Invitrogen, cat. no. ant-pm-2), BIT

9500 (10%; STEMCELL, cat. no. 09500), Glutamax 100X (1%; Fisher Scientific, cat. no. 5112367), heparin (1 mg/ml; Sigma-Aldrich, cat.

no. H3393-100KU), and growth factors: FGF (20 mg/ml; PeproTech, cat. no. AF-100-15), LIF (2 ng/ml; PeproTech, cat. no. 300-05), EGF

(20 mg/ml; PeproTech, cat. no. AF-100-15), and PDGF (20 ng/ml; PeproTech, cat. no. 100-00AB). Cells were maintained in a 5% CO2

incubator at 37�C.
WTC11 i3Neuron dCas9-KRAB hiPSCs (genetically male iPSC linewith inducibleNGN2 andCRISPRi,WTC11 background, RT029/

SF2019-227, obtained from the Kampmann Lab) were differentiated into glutamatergic neurons following the iNeuron pre-differen-

tiation and differentiation protocol from the Kampmann lab.40 Briefly, hiPSCs were cultured for about a week in Stemflex media

(Thermo Fisher, cat. no. A3349401). Cells were dissociated using accutase (Thermo Fisher, cat. no. A11105-01) and seeded at

7.5x105 cells/well in 6-well plates in pre-differentiation media on day –3 for pre-differentiation into neural progenitor cells (NPCs).

Half media changes with N2 pre-differentiation media were performed daily until day 0. On day 0, cells were dissociated once again

using accutase, and re-plated at 7x106 cells/well in Poly-D-Lysine (PDL; Thermo Fisher, cat. no. A3890401)-coated 10-cm dishes

with N2/B27 differentiation media for differentiation into neurons. The pre-differentiation media consisted of Knockout DMEM/F12
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(Thermo Fisher, cat. no. 12660-012), NEAA 100X (Thermo Fisher, cat. no. 11140-050), and N2 Supplement S100X (Thermo Fisher,

cat. no. 17502-048). Differentiation media consisted of DMEM/F12 HEPES (Thermo Fisher, cat. no. 11330-032), Neurobasal-A

media, NEAA 100X, GlutaMax 100X (Thermo Fisher, cat. no. 35050-061), N2 Supplement 100X, and B27 minus vitamin A 50X

(Thermo Fisher, cat. no. 12587010). Trimethoprim (Sigma-Aldrich, cat. no. 92131-1G), NT-3 (PeproTech, cat. no. 450-03), BDNF

(PeproTech cat. no. 450-02), and mouse laminin (Thermo Fisher, cat. no. 23017-015) were added during plating and media changes.

ROCK inhibitor (Tocris, cat. no. 125410) was added only during plating on day –3 and day 0. Finally, Doxycycline (Sigma-Aldrich, cat.

no. D3447-500MG) was added during plating on day –3, during media changes on day –2 and day –1, and during plating on day 0.

Cells were grown in a 5% CO2 incubator at 37
�C.

All mouse work was performed under the guidelines of UNC-Chapel Hill Institutional Animal Care and Use Committee (IACUC),

complying with the IACUC-approved protocol 23-008.0. Cas9 transgenic mice47 (JAX cat. no. RRID:IMSR_JAX:026179) were

used for in vivo CROP-seq experiments. The mice were maintained in a C57BL/6J background. All mice used for the experiment

were heterozygous for the Cas9 transgene, obtained by crossing homozygous males to wild-type C57BL/6J females. After

3 days of mating, dams were group-housed until 3 to 5 days before giving birth. Dams were single-housed by the time pups were

born. Pups stayed with their mother until the single-cell prep experiment (P13-P15). A total of 15 pups (10 males, 5 females) from

8 different litters were used for the dataset.

METHOD DETAILS

Cross-disorder variant selection
Variants that overlap 136 GWS loci with p<1x10–5 were selected from the cross-disorder GWAS.5 Variant sequences that harbor re-

striction enzyme sites used for downstream molecular cloning (MluI, SpeI, KpnI, XbaI) were removed, leaving 17,841 variants to be

tested. Alleles were positioned in themiddle of a 150-bp region of their surrounding genomic sequences. Tiled 150-bp sections of the

CMV and EF1a promoters were included as positive controls (with a total of 6 sequences), and sequences of scrambled DNA with

matching GC contents to the MPRA library were included as negative controls (with a total of 100 sequences). We used Agilent oli-

goarray chip technology to synthesize 150-bp variant-harboring sequences (sequences extracted from hg19) with flanking restriction

enzyme sites for molecular cloning and primer sequences for amplification (total 200-bp in size).

MPRA library construction
The synthesized 200-bp oligo library was diluted to 1:20 and amplified using MPRA-chip-primer-F and MPRA-chip-primer-R with

NEBNext 2X Q5 Hifi HS Mastermix (NEB, cat. no. M0453S). The resulting PCR reaction was cleaned up with Zymo DNA Clean

and Concentrator Kit-5 (Zymo Research, cat. no. D4033). Random barcodes were added via PCR using MPRA-bc-primer-F and

MPRA-bc-primer-R with NEBNext 2X Q5 Hifi HS Mastermix. The resulting PCR product was cleaned up with Zymo DNA Clean

and Concentrator Kit-5. The MPRA vector, Donor_eGP2AP_RC (Addgene: ID#133784),67 and the oligo library was digested with

SpeI-HF (NEB, cat. no. R3133S) and MluI-HF (NEB, cat. no. R3198S). The digested oligo library was ligated into the

Donor_eGP2AP_RCplasmid using T7 DNA ligase (NEB, cat. no. M0318S). The ligationmix was transformed into Endura Electrocom-

petent cells (Lucigen, cat. no. 60242-1) via electroporation. After 1 hour of recovery at 37�C, the bacteria was plated onto 10 cm LB

plates with kanamycin and incubated overnight at 37�C. Colonies were scraped and cultured in 4L of LB with kanamycin at 30�C
overnight. Plasmid DNA was purified using ZymoPURE II Plasmid Maxiprep Kit (Zymo Research, cat. no. D4203).

The library and barcode region were amplified from the plasmid with BC_Map_P5_R and BC_Map_P7_F_Ind_# using NEBNext 2X

Q5 Hifi HS Mastermix, which added sequencing adapters and indices for demultiplexing. This PCR product was size-selected and

cleaned up using SparQ beads (VWR, cat. no. 76302-834), and sequenced for barcodemapping via 2x150-bp Novaseq SPwith 20%

PhiX and custom sequencing primers: BC_Map_R1seq, BC_Map_R2seq, and BC_Map_Index. Barcodes were assigned to each

oligo sequence, as previously described17 using the custom code: https://github.com/kiminsigne-ucla/bc_map. See Table S6 for

primer sequences.

The minimal promoter (minP) and luciferase (Luc) sequence was digested from the pMPRAdonor2 plasmid (Addgene: ID#49353)

using KpnI-HF (NEB, cat. no. R3142S) and XbaI (NEB, cat. no. R0145S). The desired bandwas extracted from a 1%agarose gel using

Zymo Gel DNA Recovery Kit (Zymo Research, cat. no. D4008). The Donor_eGP2AP_RC plasmid containing the library and barcode

was digestedwith KpnI-HF and XbaI and cleaned upwith the ZymoDNAClean andConcentrator Kit-5. The digested plasmid and the

minP-Luc fragment were ligated using T7 DNA ligase. The ligase reaction was transformed into Endura Electrocompetent cells,

plated on 10 cm LB plates with kanamycin, and grown at 37�C overnight. Colonies were scraped and cultured in 4L of LB with kana-

mycin at 30�C overnight. The plasmid was purified using the ZymoPURE II Plasmid Maxiprep Kit.

Introduction of MPRA libraries into HNPs
HNPs were plated and maintained as described in the experimental model and study participant details. Forty-eight hours after

plating, cells were half-fed using the Neurobasal-A media supplemented with primocin, BIT 9500, Glutamax 100X, and heparin

with twice the amount of growth factors and nucleic acid transfection enhancer (NATE) at 1:50 final dilution (InvivoGen, cat. no.

lyec-nate). We transfected each well with 2.5 ug of MPRA plasmid library and 1 ug of pUC19 (Thermo Fisher, cat. no. SD0061) using

Lipofectamine STEM (Invitrogen, cat. no. STEM00015) according to the manufacturer’s instructions. Forty-eight hours after
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transfection, cells were half-fed. Seventy-two hours after transfection, DNA and RNA were extracted from the cells by Quick-DNA/

RNA Miniprep Plus Kit (Zymo Research, cat. no. D7003) using 600 uL of shield buffer and 600 uL of lysis buffer per well.

RNA and DNA library generation
Extracted RNA was reverse transcribed into cDNA using SuperScript IV Reverse Transcriptase (Invitrogen, cat. no. 18090050) with a

primer targeting the region downstream of the barcodes (Lib_Hand_RT). The resulting cDNA was amplified with primers Lib_Hand

and Lib_seq_Luc_R using NEBNext 2X Q5 Hifi HSMastermix. The PCR product was cleaned up with Zymo DNA Clean and Concen-

trator Kit-25 (Zymo Research, cat. no. D4033). In parallel, 4 uL of DNA from each well was amplified by 4 PCR reactions using primers

(Lib_Hand_RT and Lib_Seq_Luc_R) and NEBNext 2X Q5 Hifi HS Mastermix. The PCR product was similarly cleaned up with Zymo

Clean and Concentrator Kit-25. We then added P5/P7 adapter sequences and demultiplexing indices to both the cDNA and DNA

libraries by PCR using primers (P5_seq_Luc_F and P7_Ind_#_Han) and NEBNext 2X Q5 Hifi HS Mastermix. The PCR product was

cleaned up and size-selected using AMPure XP Beads (Beckman Coulter, cat. no. A63881) with 0.7X and 0.9X ratios to select for

a DNA fragment at 273-bp. The libraries were subsequently sequenced via NovaSeq SP using custom cycles of 35 x 8 x 0 with

20% PhiX and custom sequencing primers. See Table S6 for primer sequences.

CROP-seq in hiPSC-derived neurons
The CROP-seq library was generated using a modified version of the original CROP-seq vector39 with the puromycin sequence re-

placed by tag red fluorescent protein (tRFP) (CROPseq-tRFP, Addgene: ID#230938). The gRNAs targeting three emVars (rs4513167

and rs4614799 in the DCC locus; rs301804 in the RERE locus), along with two additional MPRA-allelic/inactive variant targets

(rs8089270 and rs6508210 in the DCC locus) were inserted into the CROP-seq vector, as previously described.39 Four gRNAs

were designed per variant to account for variability in individual gRNA knockdown efficiency (see Table S6 for gRNA sequences).

The CROP-seq library was then packaged into lentivirus (CROPseq-tRFP-guideLib-in vitro; Vector copy number [VCN] titer:

2.07x1010 transducing units [TU]/mL) by the UNC Lenti-shRNA Core Facility.

CROP-seq in hiPSC-derived neurons
WTC11 i3Neuron dCas9-KRAB hiPSCs were grown and differentiated as described in the experimental model and study participant

details section. CROP-seq lentivirus was added to cells on day 0 at amultiplicity of infection (MOI) of 4. The lentivirus was removed via

media change after 24 hours of transduction. Fluorescence of RFP was monitored to ensure successful transduction of cells. When

neurons reached day 11 of differentiation, they were collected from wells through single-cell dissociation using the Worthington

Papain Dissociation System (Worthington, cat. no. LK003153). Briefly, on the day of collection, papain (Worthington, cat. no.

LK003153) was resuspended in 5 mL 1X HBSS (Thermo, cat. no. 2277417) to a final concentration of 20 U/mL. A resuspension so-

lution of DMEM (Thermo Fisher, cat. no. 10313039) with 10% FBS was also prepared, and both solutions were pre-warmed at 37�C
for at least 10 minutes. Conditioned media from the neuron cultures was collected separately from lentivirus-treated and untreated

cells. To enhance cell survival and prevent aggregation during FACS preparation, 10 mMY-27632 dihydrochloride ROCK inhibitor and

2%FBS (Corning, cat. no. 35-015-CV) were added to each tube of conditioned media. Immediately before use, DNase (Worthington,

cat. no. LK003153) at 5 mg/mL and Magnesium Chloride (Thermo Fisher, cat. no. AM9530G) at 5 mM were added to the papain so-

lution. The culture media was aspirated, cells were washed with DPBS (Thermo Fisher, cat. no. 14190144), and the papain dissoci-

ation solution was added at 500 uL per well. The plate was then placed in the 37�C incubator for 10 minutes and after incubation,

gently agitated to ensure neuron sheet dissociation. The papain dissociation solution was then quenched in 5 volumes of DMEM

and 10% FBS solution, and the neuron sheet was then gently triturated with a P1000 pipette. Lentivirus-treated and untreated cells

were transferred separately to 15 mL conical tubes and centrifuged at 200g for 10 minutes. The supernatant was carefully removed,

and cells were resuspended by slow vortexing in the conditioned media solution containing ROCK inhibitor and 2% FBS in prepa-

ration for FACS.

Live, RFP-expressing cells were isolated via FACS by the UNC Advanced Analytics (AA) Core. After FACS, RFP+ cells were imme-

diately processed by the UNC AA Core using the 10x Genomics 3’ v3.1 Dual Index workflow for scRNA-seq library generation. To

assign gRNAs to cells, gRNA reads were separately enriched from cDNA using custom-designed primers targeting the CROP-

seq backbone sequence (GuideEnrich_1, GuideEnrich_2, GuideEnrich_3, and GuideEnrich_4; see Table S6 for primer sequences).

The resulting libraries were sequenced with Illumina NovaseqX 10B, using 3 lanes for the scRNA-seq libraries (cycles R1 x i1 x i2 x

R2 = 28 x 10 x 10 x 90, with 1% PhiX) and 1 lane for gRNA enrichment libraries (cycles R1 x i1 x i2 x R2 = 28 x 10 x 10 x 42, with

20% PhiX).

Immunofluorescence staining of hiPSC-derived neurons
For immunofluorescence imaging, 12-mm diameter coverslips (Electron microscopy sciences, cat. no. 72230-01) were placed in

24-well plates and coatedwith PDL. Cells were seeded at a density of 1x105 cells/well on day 0 of plating. On day 11 of differentiation,

the media was removed and cells were washed once with DPBS. Freshly prepared 4% formaldehyde (Millipore Sigma, cat. no.

F1635) was added to wells (250 uL/well). The cells were then incubated at room temperature for 15 minutes. The formaldehyde

was then removed and 250 uL DPBS were added 3 times to wash fixed cells. Afterwards, cells were permeabilized using 500 uL/

well of 0.3% Triton (Millipore Sigma, cat. no. T8787)/PBS and incubated 15 minutes at room temperature. The Triton/PBS was
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then aspirated from coverslips, followed by washing 3 times with DPBS. Blocking was performed by adding 250 uL/well of 5% BSA

(Millipore Sigma, cat. no. A9576)/PBS and incubating at room temperature for 1 hour. All primary antibodies were diluted in 1%BSA/

PBS. They were mouse TUJ1 (Millipore Sigma, cat. no. T8578) diluted at 1:1000, rabbit SATB2 (abcam, cat. no. ab34735) diluted at

1:500, mouse MAP2 (Millipore Sigma, cat. no. M1406) diluted at 1:1000, mouse NF-H (Thermo Fisher, cat. no. MA1-2012) diluted at

1:1000, and rabbit PSD95 (Millipore Sigma, cat. no. P246) diluted at 1:500. Primary antibodies were added to the coverslips at 100 uL/

well and incubated overnight at 4�C. Following incubation, the antibodies were removed, and the coverslips were washed 3 times

with 0.1% Tween20 (Milipore Sigma, cat. no. P2287)/PBS (500 uL/well) for 5 minutes at room temperature per wash. All secondary

antibodies were diluted 1:1000 in 1% BSA/PBS. They were AlexaFluor488 anti-mouse (Thermo Fisher, cat. no. A-28175), which was

used for MAP2, TUJ1, and NF-H primary antibodies, and AlexaFluor647 anti-rabbit (Thermo Fisher, cat. no. A-21245), which was

used for SATB2 and PSD95 primary antibodies. Secondary antibodies were added to the coverslips at 250 uL/well and incubated

for 30 minutes at room temperature. After incubation, secondary antibodies were removed, and the coverslips were washed 3 times

with 100 uL of 0.1% Tween20/PBS for 5 minutes at room temperature per wash. Finally, DAPI (Millipore Sigma, cat. no. D9542) was

diluted 1:1000 in PBS and added to wells at 250 uL/well, incubating for 15 minutes at room temperature. The DAPI was removed and

coverslips were washed 3 times with 250 uL of PBS for 5 minutes at room temperature per wash.

CROP-seq in mouse brain
gRNAs targeting the coding sequence of Anp32e (Anp32e_gRNA1 and Anp32e_gRNA2) and Kmt5a (Kmt5a_gRNA1 and

Kmt5a_gRNA2) were inserted into CROPseq-tRFP using the previously described protocol.39 gRNA sequences are described in

Table S6.

The CROP-seq library was packaged into lentivirus (CROPseq-tRFP-guideLib-invivo, titer: 2.25 x 109 – 2.38 x 1010 TU/mL) by the

UNC Lenti-shRNA Core Facility. The mice were injected with the lentivirus bilaterally into the lateral ventricles of the brain (2–3 uL of

virus per mouse) at postnatal day 0. The virus was mixed with Fast Green FCF dye (Sigma, cat. no. F7252-5G, 0.5 mg/mL) for visual

tracking of the injection then loaded into a Hamilton syringe (Hamilton, cat. no. 7634-01) with a 32 gauge needle (Hamilton, cat. no.

7803-04, point style 2, 0.4 inch length) attached to a custom stereotaxic instrument (Kopf, cat. no. 176-61-SB-A, 1449-A, 1772-A).

Pups were anesthetized on ice for 2 minutes before being injected with the virus-dye mixture. They are then warmed up via a heating

pad before being returned to the mother.

When the mice reached postnatal day 13-15, the neocortex was dissected for live single-cell dissociation using the

Worthington Papain Dissociation System. Upon sacrifice, pups’ toes were cut for genotyping confirmation of the Cas9

transgene. Genotyping PCR primers and protocols were from Jackson standard protocol (JAX, cat. no. RRID:IMSR_

JAX:026179). Briefly, minced neocortical tissue was incubated in papain/DNase solution with constant agitation for 90 minutes

at 37�C in a 5% CO2 incubator. After chemical digestion, the tissue was gently triturated using a serological pipet. Dissociated

cells were filtered through a 70-mm cell strainer, and protease inhibitor and DNase were added before pelleting at 300g for 5 mi-

nutes. Cells were resuspended in the resuspension buffer consisted of Hibernate A (BrainBits, cat. no. HALF500), B27 (Thermo

Fisher, cat. no. A3582801), and 10% FBS (Avantor, cat. no. 97068-085). Y-27632 ROCK inhibitor (Selleck Chemicals, cat. no.

S1049) was added to all media used (dissection, digestion, resuspension) in 1:1000 ratio to reduce cell death during single-cell

prep. Next, live RFP-expressing cells were sorted by FACS and processed using the 10x Genomics 3’ v3.1 Dual Index workflow

for scRNA-seq library generation by the UNC AA Core. gRNA reads were separately enriched from cDNA using custom-designed

primers targeting the CROP-seq backbone sequence for assigning gRNAs to cells (GuideEnrich_1, GuideEnrich_2, GuideEnrich_3,

and GuideEnrich_4; see Table S6 for primer sequences). The resulting libraries were sequenced with Illumina high-throughput se-

quencers (NextSeq2000 P2 or P3 for gene expression library, NovaSeq6000 SP for gRNA expression library). We used cycles R1 x

i1 x i2 x R2 = 28 x 10 x 10 x 90, with 1% PhiX for gene library, and cycles R1 x i1 x i2 x R2 = 28 x 10 x 10 x 42, with 20% PhiX for

gRNA library.

QUANTIFICATION AND STATISTICAL ANALYSIS

MPRA data preprocessing
Each barcode DNA library was sequenced to an average read depth of 81M reads (51-109M). Each barcode RNA library was

sequenced to an average read depth of 167M reads (155-191M). Since our MPRA library contained 35,891 oligo sequences

(35,682 variants + 209 positive and negative controls), each oligo sequence was sequenced to an approximate read depth of

�2,257 for DNA and �4,563 for RNA. Barcode-variant relationships were decoded from the barcode mapping step. From mapped

barcodes, we generated barcode reference files and aligned our variant-barcode pairs using BWA.68,52 From the alignment,

we created RNA and DNA count matrices using featureCounts69 (version 2.0.6) using the following parameters: –minOverlap =

20, –fracOverlap = 1, –fracOverlapFeature = 1. We excluded barcodes which were mapped to more than one variant. In total, we

detected 397,152 barcodes that are uniquely mapped to each variant. RNA and DNA barcode counts were then aggregated for

each variant. When applying quality control (QC) metrics, we first identified and filtered out outlier barcodes, defined as individual

barcodes that had a log2
�
RNA
DNA

�
> 2 +median(log2

�
RNA
DNA

�
) for the given variant. This filtering step resulted in 397,055 barcodes, dropping

out 97 barcode outliers. We also filtered out (1) variants with <5 barcodes per allele, and (2) variants which did not havemeasured risk
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and protective allelic pairs. This resulted in 381,012 barcodes, with each variant mapped to an average of 11.86 barcodes (median

value of 11). Finally, variants were removed if, for either allele, the proportion of total read counts (DNA + RNA) from individual barc-

odes that could be spuriously mapped by allowing mismatches was greater than 30%. See Figure S1A for the data analysis

flow chart.

Identification of active elements
To identify active regulatory elements, we used the mpra (version 1.24.0) R package58 with the following code:
mpra_set <- MPRASet(DNA = dna_matrix, RNA = rna_matrix, eid = element_ID, eseq = NULL, barcode = NULL)

design_matrix <- data.frame(intcpt = rep(1, replicate_number))

fit <- mpralm(object = mpra_set, design = design_matrix, aggregate = "sum", normalize = FALSE, model_type = "indep_groups", plot = TRUE)

tr <- treat(fit, lfc=log2(1.238016))

mpra_result <- topTreat(tr, coef = 1, number = Inf)

mpra_element = mpra_result %>%

group_by(variant) %>%

filter(P.Value == min(P.Value))

mpra_element$fdr = p.adjust(mpra_element$P.Value, "BH")

mpra_active = mpra_element[mpra_element$fdr<0.05 & mpra_element$logFC>0, ]

mpra_inactive = mpra_element[mpra_element$P.Value>0.1, ]
Briefly, an MPRAset object (mpra_set) was created using the RNA (rna_matrix) and DNA (dna_matrix) matrices (rows: barcodes

assigned to each oligo sequence, columns: replicates) and the corresponding oligo sequence IDs (element_ID). The design_matrix

was defined by including an intercept term for each replicate. We then performedMPRA analysis using the mpralm function, with the

MPRASet object and the design matrix as inputs. The RNA/DNA ratio for each oligo sequence was compared to the average RNA/

DNA ratio (1.238016) of the negative control with sample outliers removed (i.e., for each negative control sequence, RNA/DNA ratios

were compared against 22 biological replicates, and replicates exceeding >2 standard deviations were subsequently removed), from

which the statistical significance was calculated. The resultingMPRA summary statistics were obtained using the topTreat() function.

For each element, two oligo sequences (one with the A1 allele and the other with the A2 allele) were tested. Therefore, there is a

possibility that (1) only one of the sequences was classified as active, and (2) the activity of two sequences is not entirely independent.

To address this, we selected the minimal p value from each of the two sequences for calculating Benjamini-Hochberg adjusted FDR

for each element. Elements were defined to be active (mpra_active) if they met the significance threshold of FDR<0.05 and log2 fold

change (FC)>0. Inactive elements (mpra_inactive) were definedwhen both alleles had p>0.1, suggesting that both alleles do not show

signs of regulatory activity.

Stratification of active elements based on transposable elements
We identified MPRA-active and MPRA-inactive elements that overlap with transposable elements using RepeatMasker61 (version

Open-3.0) downloaded from the UCSC genome build hg19. We surveyed three types of repetitive elements: ERV1 superfamily of

long-terminal repeat (LTR) retrotransposons, non-LTR retrotransposons, and hAT superfamily of DNA transposons.70 Non-LTR

transposons were further categorized into Alu repeats (representing short interspersed elements, or SINE), L1 (representing long

interspersed elements, or LINE), and SINE-VNTR-Alus (SVA). Elements that exhibit >50% sequence overlap with a specific transpos-

able element were categorized as transposable elements. For example, active elements with >50% sequence overlap with Alu re-

peats were classified as Alu-active elements, while those without such overlap were classified as noAlu-active elements.

Given the enrichment of Alu repeats in active elements, we compared the overlap of active/inactive elements with Alu repeats. We

ranked active and inactive elements based on the p values of their enhancer activity, grouping them into 10 bins (deciles). The top bins

consist of elements with the most significant regulatory activity (lower MPRA p values and higher enhancer activity), while the bottom

bins consist of elements with the least significant regulatory activity (higher MPRA p values and lower enhancer activity). Subse-

quently, the percentage of elements within each bin that overlap with Alu repeats (>50% sequence overlap) was calculated.

Epigenetic annotation of active elements
To characterize the epigenetic properties of active elements during neurodevelopment, we overlapped them with (1) scATAC-seq

peaks from the developing telencephalon11 and (2) EPRI anchors in HNPs.14 The coordinates of inactive, active, active-Alu, and

active-noAlu elements were converted from hg19 to hg38 using the liftOver() function in the rtracklayer Bioconductor package62

(version 1.54.0). These coordinates were then overlaid against the ATAC-seq peaks in each cell type as well as EPRI anchors in

HNPs using the findOverlaps() function of the GenomicRanges R package. We quantified the number of elements overlapping

ATAC-seq peaks (or EPRI anchors) and utilized these counts to conduct enrichment analysis. To compare the overlap between active
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and inactive elements, we conducted Fisher’s exact test with the contingency table: (1) active (active/active-Alu/active-noAlu) ele-

ments that overlap with CREs (ATAC-seq peaks/EPRI anchors) in a given cell type, (2) active elements that do not overlap with CREs

in a given cell type, (3) inactive elements that overlap with CREs in a given cell type, and (4) inactive elements that do not overlap with

CREs in a given cell type.

We next quantified the read coverage of MPRA-active, active-Alu, active-noAlu elements using scATAC-seq bigwig files for each

cell type. To account for variation in read depth, we normalized the resulting read coverage by the read depth of each cell type. We

then calculated the average normalized read coverage for each type of active element (active, active-Alu, and active-noAlu) and cell

type. Subsequently, we performed scale normalization across cell types to assess the cell-type-specific accessibility of each type of

active element.

TF motif enrichment analysis
We used HOMER56 (version 4.10.4) to investigate the TF motif contents of regulatory elements identified by MPRA (i.e., MPRA-inac-

tive, MPRA-active, active-Alu, and active-noAlu). In particular, we used the findMotifsGenome.pl script within HOMER to identify en-

riched motifs in genomic regions of interest with default parameters using hg19 coordinates. This program returns TFBMs that are

enriched in a given region of interest with their respective percentage of sequences harboring its respective TFBMs and statistics

(e.g., p and q value). We filtered our result by q<0.05. To obtain enriched TFBMs, we searched ±250-bp around our regulatory

elements.

Motif enrichment scores were calculated by using the following equation:

Motif Enrichment Score = log2

P
D % of sequence overlap � number of motifs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
number of elements

p

D%of sequence overlap is defined as the%of target sequence ov
erlap (e.g., active, active-Alu, active-noAlu)minus the%ofMPRA-

inactive element overlap.

Identification of regulatory variants
To identify variants with regulatory activity, we also used the mpra (version 1.24.0) Bioconductor package58 with the following code:
mpra_set <- MPRASet(DNA=dna_matrix, RNA=rna_matrix, eid=varid, eseq=NULL, barcode=NULL)

batch <- as.factor(c(rep(c(rep(1,10),rep(2,12)),2)))

alt <- c(rep(FALSE,repnum),rep(TRUE,repnum))

design_matrix <- model.matrix(�alt+batch)

samples = rep(1:repnum,2)

tr <- mpralm(object=mpra_set,

design=design_matrix,

plot=T,

aggregate="none",

normalize=T,

block=samples,

model_type="corr_groups")

mpra_result <- topTable(tr, coef = 2, number = Inf)

mpra_result$fdr = p.adjust(mpra_result$P.Value, "BH")

mpra_allelic = mpra_result[mpra_result$fdr<0.05, ]

mpra_nonallelic = mpra_result[mpra_result$P.Value>0.1, ]
Briefly, an MPRASet object (mpra_set) was created using the RNA (rna_matrix) and DNA (dna_matrix) matrices (rows:

measured variants, columns: aggregated barcode counts for each A1 and A2 allele across samples). The design_matrix was

defined by regressing with an indicator for one allele compared to the other ("A2" compared to "A1") and for batch. We

then performed MPRA analysis using the mpralm function, with the MPRASet object and the design matrix as inputs. The re-

sulting MPRA summary statistics (mpra_result) were obtained using the topTable function. P-values (P.Value) extracted from the

mpra_result indicate statistical significance of allelic activity for each variant. These p values underwent multiple testing correc-

tion using the Benjamini-Hochberg adjusted FDR procedure. Variants were defined as having allelic regulatory activity (mpra_

allelic) when they met the significance threshold of FDR<0.05. We then combined these variants with allelic regulatory activity

with MPRA-active elements to define emVars. We also defined MPRA-nonallelic variants when their allelic regulatory activity

significance was greater than p>0.1 (mpra_nonallelic) and did not overlap with MPRA-active elements. We defined emVars

as variants that exhibit significant differential regulatory activity between risk and protective alleles (FDR<0.05) and are located

in MPRA-active elements.
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Stratification of variants based on mDisorder
The original cross-disorder GWAS reported mDisorder values that represent the number of disorders associated with

each locus surpassing the GWS threshold.5 Consequently, all emVars within a given locus were assigned to their corresponding

mDisorder (the number of disorder) category. Variants were further stratified based on mDisorder, where mDisorder1

represents variants associated with only one disorder, and mDisorder3 represents variants associated with three or

more disorders (up to eight disorders). Variants associated with three or more disorders (mDisorder3) are considered

pleiotropic.

Epigenetic annotation of emVars
We characterized the epigenetic properties of emVars by overlapping them with scATAC-seq peaks from the developing

brain.11 Because scATAC-seq peaks were in hg38, we converted the coordinates of emVars from hg19 to hg38 using the

liftOver() function in the rtracklayer Bioconductor package62 (version 1.54.0). We quantified the read coverage of emVars

using scATAC-seq bigwig files for each cell type. We extended the flanking region of the variants from 150-bp to 500-bp

(±250-bp centered on the variants) to enhance the ATAC-seq signals for quantification. We normalized the resulting read

coverage by the read depth of each cell type, calculated the average normalized read coverage for each cell type, and

performed scale normalization across cell types to assess the cell-type-specific accessibility of emVars. We repeated the

same analysis after stratifying emVars into mDisorder1 and mDisorder3 emVars. To assess the cell type specificity of (mDisor-

der1 and mDisorder3) emVars, we conducted a paired t test to compare scaled-normalized chromatin accessibility between

excitatory neuronal lineage (early EN, dlEN, ulEN) vs. the remaining cell types (RG, IPC, IN:Prog, IN:MGE, IN:CGE,

AstroOligo, Micro).

Defining genomic background SNPs
We defined the genomic background SNPs by obtaining variants with matched minor allele frequency (MAF) and LD with no nominal

association (p>0.05). For each MPRA-tested variant, we randomly obtained 10 variants within the same chromosome with matched

MAF (± 10%) and the number of variants in LD (r2>0.8). We obtained all variants with their respective MAF and LD if less than 10 var-

iants were selected for a given MPRA-tested variant. MAF values and the number of LD SNPs were obtained using the garfield pro-

gram54 (version 2.0), as previously described.17

TFBM alteration enrichment analysis
We used the motifbreakR57 Bioconductor package (version 2.10.2) to identify TFBMs altered by emVars. Following their vignette on

the Bioconductor website, we subsetted the TFmotif database byHsapiens and excluded stamlabs. The resulting database included

TFmotifs from HOCOMOCOv10, HOCOMOCOv11, JASPAR_CORE, JASPAR_2014, jaspar2016, jaspar2018, and jaspar2022. Then

we ran the following code to obtain TFs with binding motifs that were altered by emVars:
motifbreakR(..., filterp = TRUE, method = "ic", threshold = 1e-4, bkg = c(A = 0.25, C = 0.25, G = 0.25, T = 0.25))
The reference and alternative allele’s p values were calculated by using:
calculatePvalue(..., granularity = 1e-5)
The output file was filtered by Refpvalue & Altpvalue < 0.05 and effect = ‘‘strong’’ to identify strong TF motif alterations.

To calculate the TFBM alteration enrichment for emVars, we also conducted motifbreakR analysis on genomic background SNPs

and compared them to the number of TFBM alterations. Fisher’s exact test was conducted to quantify enrichment using the contin-

gency table: (1) emVars that alter TFBM1, (2) emVars that do not alter TFBM1, (3) genomic background variants that alter TFBM1, and

(4) genomic background variants that do not alter TFBM1.

From this analysis, we identified TFs with nominal enrichment (p<0.05) relative to the genomic background. We repeated the same

analysis for mDisorder1 and mDisorder3 emVars to identify transcriptional regulators for disorder-specific and pleiotropic variants,

respectively.We identified PPIs among the TFs (i.e., emVar, mDisorder1, andmDisorder3 TFs) using the STRING database65 (version

12.0) by inputting these TFs for ‘‘multiple proteins’’ analysis.
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PPI network of TFBMs
mDisorder1 and mDisorder3 TFs were queried with the STRING database (version 12.0).65 We used the full STRING network, visu-

alizing medium-confidence (0.4 interaction score) edges with no other interactors besides themselves. To compute PPI connectivity,

we downloaded the table listing reciprocal edges (i.e., gene A-gene B, gene B-gene A) from STRING. From this data we derived a

dataframe listing the number of non-zero edges (PPI connectivity) each TF has and used the Anderson-Darling k-Sample test to

test the difference between the two distributions (mDisorder1 TFs vs mDisorder3 TFs).

Statistical fine-mapping of emVars
To run fine-mapping on our loci we first used our 136 index SNPs and identified variants that overlap with each locus using the Ge-

nomicRanges R package. For all variants within a given GWS locus, we ran PLINK60 (version 1.90b3.45) using 1000 Genomes Phase

371 chromosomal bam files, with the --r and --matrix parameters to produce the LD matrices. We also calculated z-scores for each

variant as log2
�

Odds Ratio
Standard Error

�
: We then used the resulting LD matrices and z-scores to run each fine-mapping algorithm with default

parameters and a specification to detect one putative causal variant per locus.

For SuSiE (version 0.12.35), we ran the following code to obtain PIPs and credible sets:
susie_rss(z = zscore, R = LDmatrix, L = 1, n=727126)
For CAVIAR, we provided one file with the LD matrix, and one file with the rsids and their z-scores for each locus, and ran CAVIAR

(version 2.2) with -c = 1.

For FINEMAP, we provided the LDmatrix and file containing a datatable with the rsid, chromosome, position, allele1, allele2, MAF,

beta value, and standard error for each variant in each locus.We then created amaster file for each locus, which is an aggregate table

of all the previously mentioned information within a locus, and is the final input for FINEMAP. We ran FINEMAP (version 1.4.2) using

the parameters --sss and --n-causal-snps = 1.

To visualize the number of overlapping variants among emVars and fine-mapped variants from three statistical fine-mapping

methods, we utilized the UpsetR66 (version 1.4.0) R package. We also visualized their correlation by comparing the PIP values of

all tested variants across three fine-mapping algorithms.

To calculate the enrichment of emVars compared to MPRA-nonallelic variants that pass PIP threshold (PIPthr), we conducted two-

sided Fisher’s exact test with the contingency table for each credible set size: (1) emVars with PIP>PIPthr, (2) MPRA-nonallelic var-

iants with PIP>PIPthr, (3) emVars with PIP%PIPthr, and (4) MPRA-nonallelic variants with PIP%PIPthr.

To compare the MPRA p values and abs(log2FC) values between FM-emVars and nonFM-emVars, we applied progressive thresh-

olding based on the credible set size and calculated the statistical significance by using the two-sided Wilcoxon rank sum test.

eQTL overlap
The bulk homogenate brain meta-eQTL dataset was obtained from de Klein et al.27 We utilized their cortex meta-eQTL (n=6,523)

filtered by FDR<0.05. Cell-type-specific eQTL datasets were obtained from Bryois et al.28 (n=192) and the PsychENCODE Con-

sortium32 (layer 2-3 excitatory neurons [L2-3], n=346; layer 4 excitatory neurons [L4], n=319, layer 5 excitatory neurons [L5],

n=333; layer 6 excitatory neurons [L6], n=328; LAMP5-expressing interneurons [LAMP5], n=223; SST-expressing interneurons

[SST], n=278; VIP-expressing interneurons [VIP], n=294; Parvalbumin-expressing chandelier cells [ChC], n=313).32 Since the dataset

from Bryois et al. did not include adjusted p values, we calculated adjusted p values using the qvalue72 (version 2.26.0) Bioconductor

package. Both cell-type-specific eQTL datasets were filtered by q<0.05.

We overlapped our emVars with eQTL resources, aligning them by chromosome and position, or by rsid. We encountered

some discrepancies in genome assembly between our MPRA (hg19) and eQTL datasets (either in hg19 and hg38). Conse-

quently, we converted our MPRA into hg38 using the liftOver() function in the rtracklayer62 (version 1.54.0) Bioconductor

package. Variants that weren’t converted into hg38 were further converted into hg38 by using the getBM() function in the bio-

maRt51 (Version 2.58.0) Bioconductor package. We overlapped our MPRA data with eQTL datasets in hg38 based on chromo-

some and position. If chromosome and position weren’t provided, we matched solely by rsid. Colocalization analysis was con-

ducted between meta-eQTL and cross-disorder GWAS using the coloc53 (version 5.1.0.1) R package with default parameters,

as previously described.73 The resulting loci with colocalization posterior probability greater than 0.6 (H4 PP>0.6) were retained.

For variant-level analysis, the proportion of overlap between MPRA and eQTLs was calculated by dividing the number of emVars

that overlap with meta-eQTL by the total number of emVars. IDE overlap proportion was calculated by dividing the IDE variants (var-

iants with MPRA log2FC>0 & eQTL beta>0, and vice versa) by the number of eQTL-overlapping emVars. Coloc overlap proportion

was calculated by dividing the number of colocalized loci by the number of loci with IDE variants.
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Gene mapping for emVars
We used a three-tiered approach to assign emVars to their respective target genes. First, we overlapped emVars with meta-QTL to

select IDE variants. We then queried eGenes of those IDE variants. Second, we employed the ABCmodel, as previously described.74

We identified genes locatedwithin the 1Mb flanking regions of each cross-disorder locus. For each gene, we identified variants within

the same 1Mb flanking regions that could potentially affect that gene. Subsequently, we calculated the ABC score (chromatin acces-

sibility within a ±250-bp region around the variant x chromatin contact frequency between the variant and the gene) for each variant-

gene pair. For a given gene, we gathered ABC scores of all variants located within the 1Mb flanking regions, and calculated Z-scores

from the ABC scores. We then selected variant-gene pairs with Z>1.5. We also identified the gene promoter with the strongest chro-

matin contact frequency for emVars that were not mapped by this approach. Finally, we leveraged long-range chromatin loops75 to

link emVars to the distal target genes. Gene coordinates were based on Gencode v19 and promoters were defined as 2kb upstream

to each transcription start site (TSS), as previously described.76 Only protein-coding genes were used for gene mapping.

Stratification of genes based on mDisorder
After assigning emVars to their corresponding target genes, we translated variant-level mDisorder to gene-level mDisorder. In cases

where the same gene was associated with emVars with different mDisorder values, the highest mDisorder value was assigned to the

gene. Consequently, we categorized genes as mDisorder1 or mDisorder3 based on the mDisorder values of the variants associated

with the respective variants. Therefore, mDisorder1 and mDisorder3 genes represent genes with disorder-specific and pleiotropic

effects, respectively.

Definition of local background genes
We also compiled genes located near the cross-disorder loci as the local background null set. Because currently used approaches –

the ABCmodel, long-range chromatin loops, and eQTLs –map variants to their target genes within the ±1Mb boundary, we identified

genes located within ±1Mb of all GWAS variants tested in our study. We then removed genes mapped toMPRA-active elements and

emVars from this set to define a null set of 1,708 local background genes. These genes showed comparable expression levels to

emVar genes in HNPs.77

Biological pathway analysis
We identified biological pathways enriched for a given gene set using the R package gprofiler2 (version 0.2.3)55 with the com-

mand line:
gost(geneset, organism="hsapiens", ordered_query=F, significant=T, user_threshold=0.1, correction_method="fdr", sources=c("GO","KEGG",

"REAC"), custom_bg=backgroundgenes)
Here, geneset includes (1) genes that were mapped to emVars, including those mapped to mDisorder1 and mDisorder3 emVars

and (2) local background genes (genes located nearby cross-disorder loci).

Comparison between rare and common genes
We compared emVar genes (common genes, prioritized from common variation) with genes that harbor rare PTVs associated with

AUT (185 AUT rare genes reported by Fu et al.36) and DD37 (285 DD rare genes reported by Kaplanis et al.37). These rare genes were

compared against emVar genes using all protein-coding genes as the total gene set for Fisher’s exact test. Enrichment values and

their statistical significance were determined using the contingency table: (1) emVar genes that are also AUT/DD rare genes, (2) em-

Var genes that are not AUT/DD rare genes, (3) non-emVar protein-coding genes that are also AUT/DD rare genes, and (4) non-emVar

protein-coding genes that are not AUT/DD rare genes.

Chromatin accessibility and gene expression profiling across neurodevelopment
We first analyzed the chromatin accessibility profiles of mDisorder1 and mDisorder3 emVars in various cell types during neurodevel-

opment.11 Our focus centered on cortical cells representing a developmental lineage of excitatory neurons, which include RG, IPC,

earlyEN, dlEN, and ulEN. For each variant, we calculated the average chromatin accessibility within each cell type. The resulting

normalized chromatin accessibility of mDisorder1 and mDisorder3 emVars were visualized using the pheatmap R package (version

1.0.12),59 and variants were subsequently clustered based on their similarities in chromatin accessibility profiles, as shown in the

dendrogram. Specifically, mDisorder1 emVars formed 9 clusters, while mDisorder3 emVars formed 11 clusters. Further, we calcu-

lated the average scaled chromatin accessibility of the variants within each cluster for individual cell types. Cell types with an average

scaled accessibility greater than 0.5 were considered enriched for that particular cluster. When only one cell type displayed an

average scaled accessibility above 0.5, it indicated that the variants within the cluster were specifically active in that particular
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cell type. Conversely, if multiple cell types had an average scaled accessibility above 0.5, it indicated the variants within the cluster

were active acrossmultiple cell types. To quantify the findings, we counted the number of variants in clusters enriched in one cell type

versus clusters enriched in more than one cell type for both mDisorder1 andmDisorder3 emVars. This quantification was followed by

Fisher’s exact test using the contingency table: (1) mDisorder3 emVars within clusters accessible in >1 cell types, (2) mDisorder3

emVars within clusters accessible in one cell type, (3) mDisorder1 emVars within clusters accessible in >1 cell types, and (4) mDis-

order1 emVars within clusters accessible in one cell type.

We repeated the same analysis using the expression profiles of mDisorder1 and mDisorder3 genes in the same cell types during

neurodevelopment.11 Briefly, we calculated the average expression level within each cell type for each gene, which was visualized

with the pheatmap R package (version 1.0.12).59 Genes were further grouped into clusters based on their similarities in expression

profiles within the dendrogram, in which mDisorder1 genes formed 11 clusters, while mDisorder3 genes formed 9 clusters. The

average scaled expression values of the genes within each cluster were calculated for individual cell types, and cell types with an

average scaled expression greater than 0.5 were considered to be enriched for that cluster. We quantified the number of genes in

clusters enriched in one cell type versus clusters enriched in more than one cell type for both mDisorder1 and mDisorder3 genes.

This quantification was followed by Fisher’s exact test using the contingency table: (1) mDisorder3 genes within clusters expressed

in >1 cell types, (2) mDisorder3 genes within clusters expressed in one cell type, (3) mDisorder1 genes within clusters expressed in >1

cell types, and (4) mDisorder1 genes within clusters expressed in one cell type.

Co-expression and PPI network analysis
We compared the ‘‘hubness’’ of mDisorder1 and mDisorder3 genes within two types of networks: co-expression networks and PPI

networks. We first leveraged co-expression networks derived from transcriptomic profiles pertaining to cortical development.33 For

each gene, we retrieved kME values within the co-expression module to which the gene is assigned. These kME values indicate the

centrality of a gene within its associated co-expression module. We compared the distribution of kME values between mDisorder1

and mDisorder3 genes.

Next, we delineated PPI networks among themDisorder1 andmDisorder3 genes using the STRING database (version 12.0) via the

‘‘multiple proteins’’ analysis feature. Because HIST genes are clustered within the genome and form dense PPI networks, they were

excluded from the PPI analysis to mitigate potential bias in PPI connectivity. We then compared the number of PPI interactions be-

tween mDisorder1 and mDisorder3 genes by Anderson-Darling k-Sample test.

Developmental expression trajectory
We surveyed developmental expression trajectories of mDisorder1 and mDisorder3 genes as previously reported.8 Log2-trans-

formed expression values were centered to themean expression level per sample. mDisorder1 andmDisorder3 genes were selected

for each brain sample, and their average39 centered expression values were calculated for each brain sample. LOESS smooth curves

with 95% confidence bands were plotted for mDisorder1 and mDisorder3 genes across developmental stages.

CROP-seq data analysis in hiPSC-derived neurons
scRNA-seq and gRNA library sequencing files were processed using the cellranger50 count (version 7.0.0) pipeline. The result-

ing gene x cell and gRNA x cell expression matrices were imported into a Seurat63 (version 5.0.2) object, which was then utilized

to analyze knockdown effects of emVar target sites for nearby genes. A total of 110,414 cells were obtained post-quality control

from 5 experimental batches. For quality control, cells with >15% mitochondrial genes and cells with %1,250 unique genes

were filtered out. Association between perturbation (gRNA) and target genes were obtained by running negative binomial

GLM analysis. First, to mitigate the potential confounding effects of gRNAs targeting other variants in the same locus, we

defined control cells as those containing no gRNAs for that locus, and perturbed cells as those containing at least 3 read counts

for any of the four gRNAs targeting the variant of interest within the locus. Second, target genes were defined as genes located

within ±1.5Mb of the variant targeted by the gRNA. Third, we modeled the expression of target genes using the following for-

mula, employing a variable perturbation identity to capture the gRNA effects and using other variables to adjust for the cova-

riates’ effects:
Gene expression � perturbation identity (control or perturbed) + number of gene reads + number of gRNA reads + batch + mitochondrial gene %
For each perturbation-gene pair, the GLM coefficient and p value were obtained. We then computed left-tailed (negative coeffi-

cient) p values, which were adjusted with the Benjamini-Hochberg FDR procedure. Genes with FDR< 0.05 were considered as hits.

Additionally, we employed a permutation analysis to ensure that the significant variant-gene pairs are not due to miscalibration or

test statistic inflation. First, from all cells in the dataset, we randomly drew pseudo-control and pseudo-perturbed cells matching the
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number of actual control and perturbed cells. With pseudo-control and pseudo-perturbed cells, we tested the association between

each variant-gene pair using the same negative binomial GLM, computing the GLM coefficient for the perturbation. We repeated this

process 2,000 times and derived 2,000 permuted coefficients. Finally, by comparing the actual coefficient (derived from real control

and perturbed cells) to the distribution of the 2,000 permuted coefficients, we computed the one-sided permutation-adjusted p value.

We confirmed that all of the significant emVar-gene pairs based on FDR had permutation-adjusted p value<0.05.

Finally, for the nearby gene down-regulation lollipop plots, we employed signed –log10 p values defined by: Signed –log10p = –log10
pleft-tailed x sign(GLMcoef), where pleft-tailed and GLMcoef represent the left-tailed p value and GLM coefficient of a given variant-gene

pair respectively. The results from this analysis, including each variant-gene pair’s GLM coefficient, left-tailed p value, permuted

p value, FDR, and signed –log10 p values are provided in Table S5.

Mouse CROP-seq data processing
Sequencing files were processed with the cellranger count pipeline (version 6.1.2) to output gene x cell and gRNA x cell matrices,

which were imported into a Seurat (version 5.0.2) object for subsequent processing and analyses. Cells with R10% mitochondrial

genes and cells with no gRNA reads detected were removed from the dataset. A total of 83,386 cells were obtained post-quality con-

trol from 10 experimental batches (15 mice). Unique molecular identifier (UMI) counts across different batches were log-normalized,

then batches were integrated following Seurat standard procedures for UMAP visualization.

Differential gene expression analysis with mouse CROP-seq data
All 83,386 cells were used for differential gene expression analysis. Raw UMI counts were used for this analysis. For each CRISPR

target gene, cells were classified as either control or perturbed based on gRNA expression. Control cells were defined as those with

0 gRNA reads for the target gene, while perturbed cells were those with at least 3 gRNA reads corresponding to either of the 2 gRNAs

targeting the gene.

After grouping into control and perturbed cells, the expression of each gene in the transcriptome was modeled using a negative

binomial GLM as described below:
Gene expression � perturbation identity (control or perturbed) + number of gene reads + number of gRNA reads + batch + mitochondrial gene %
The resulting p values associated with the GLM coefficients for the perturbation identity (perturbed) were adjusted with the

Benjamini-Hochberg procedure. Genes with FDR<0.05 were defined as DEGs. Next, we employed a permutation analysis to ensure

that our called DEGs are not due to miscalibration or test statistic inflation. First, from all cells in the dataset, we randomly drew

pseudo-control and pseudo-perturbed cells matching the number of actual control and perturbed cells. With pseudo-control and

pseudo-perturbed cells, we tested the association between the perturbation and each DEG using the same negative binomial

GLM, computing the GLM coefficient for the perturbation. We repeated this process 2,000 times and derived 2,000 coefficients.

Finally, by comparing the actual coefficient (derived from real control and perturbed cells) to the distribution of the 2,000 permuta-

tion-derived coefficients, we computed the one-sided permutation-adjusted p value. A total of 46 Anp32e DEGs and 244 Kmt5a

DEGs had a permutation-adjusted p value<0.05. We used these as final DEGs. Lists for the significant DEGs, all tested genes, their

GLM coefficients and p values are provided in Table S5.

Cellular expression of mouse CROP-seq DEGs
For mouse CROP-seq data, cell types were annotated using the SingleR64 (Version 2.2.0) package with the Allen Brain MouseWhole

Cortex & Hippocampus 10x dataset (2021)78 as a reference. Cells were first labeled with subclasses from the Allen Brain metadata

and then regrouped into six major classes: astrocyte, GABAergic neuron, glutamatergic neuron, microglia, oligodendrocyte, and

vascular cells. Mean expression across the DEGs was calculated for each cell using log-normalized counts and visualized on

UMAP which includes all 83,386 cells.

For fetal human brain data, we utilized single-cell gene expression data fromNowakowski et al.48 DEGswere converted into human

orthologs, then the mean expression values of DEGs were calculated for each cell type and visualized in a scaled heatmap.

Biological pathway analysis of mouse CROP-seq DEGs
We identified biological pathways enriched for CROP-seq DEGs using the R package gprofiler2 (Version 0.2.3) with the command line:
gost(degs, organism="mmusculus", ordered_query=F, significant=T, user_threshold=0.05, correction_method="fdr", sources=c("GO","KEGG",

"REAC"), custom_bg=NULL)

Cell 188, 1409–1424.e1–e14, March 6, 2025 e13



ll
Resource
We used gene ontology terms with 5<genes<800.

Expression of the human orthologs ofmouseCROP-seq DEGs in postmortembrains of individuals with schizophrenia
Single-nucleus RNA sequencing data from the postmortem human prefrontal cortex, which includes control and schizophrenia sub-

jects, was used.49 Using this dataset, a ‘DE score’ was calculated for each gene in each cell type using the formula: DE score = –log10
padj x logFC, where padj and logFC represent the adjusted p value and log-fold change of a given gene in schizophrenia, respectively.

Next, we employed a permutation approach to assess the extent to which CROP-seq DEGs are dysregulated in the human schizo-

phrenic brain. For each cell type, we calculated the sum of DE scores for the CROP-seq DEGs (genes converted to human orthologs).

We then randomly drew n genes (where n is the number of CROP-seq DEGs) from the intersection of genes expressed in both CROP-

seq and human brain datasets and computed the sum of DE scores for those n genes. We repeated this process 10,000 times. By

comparing the actual DEGs’ sum of DE scores to the distribution of permuted scores, we computed a one-sided p value. If p<0.05,

the CROP-seq DEGs are considered significantly increased or decreased in the brains of individuals with schizophrenia compared to

random sets of genes. The signed log10(p value) is visualized for each cell type to indicate whether the CROP-seq DEGs collectively

exhibit increased or decreased expression.

PPI network of mouse CROP-seq DEGs
DEGs were queried with the STRING database (version 12.0).65 We used the full STRING network, visualizing medium-confidence

(0.4 interaction score) edges with a maximum of 10 interactors (1st shell). To compute PPI connectivity, we downloaded the table

listing reciprocal edges (i.e., gene A-gene B, gene B-gene A) from STRING. From this data we derived a dataframe listing the number

of non-zero edges (PPI connectivity) each DEG has, and visualized them in a density plot using non-zero edge nodes. Anderson-

Darling k-Sample test was used to test the difference between the two distributions (Anp32e DEGs vs Kmt5a DEGs).
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Supplemental figures

Figure S1. MPRA data processing and characterization of MPRA-active elements, related to Figure 1

(A) A flow chart schematic illustrating the steps utilized in the MPRA pre-processing pipeline.

(B) Reproducibility across 22 biological replicates was quantified using Pearson’s correlation coefficients. Pearson’s correlation coefficients for each pair of

replicates are displayed as numerical values (top right) and as pie graphs (bottom left). The average r value (measured as RNA/DNA ratios between the biological

replicates) was 0.985.

(C) A schematic of the number of MPRA-active elements in cross-disorder GWS loci. Out of 17,841 elements that harbor cross-disorder risk variants, 15,902

elements passed quality control (QC) and were thus tested via MPRA. We identified 1,478 elements across 124 GWS loci that show enhancer activity.

(D) Percent overlap of the MPRA-active and MPRA-inactive elements binned into 10 groups ordered by the significance of enhancer activity with Alu repeats.

(E and F) TFBM enrichment analysis and the TF expression level in HNPs for active-Alu (E) and active-noAlu (F) elements.
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Figure S2. Identification and characterization of emVars, related to Figure 2

(A) A schematic of defining emVars. Out of 17,841 variants in 136 GWS loci, 13,311 variants passed QC, and their allelic regulatory activity was measured. We

identified 4,472 variants with allelic activity across 131 GWS loci. We further stratified these allelic variants based on their overlap with MPRA-active elements,

which resulted in 683 emVars across 103 GWS loci.

(B) emVars were defined as the intersection between MPRA-active elements and MPRA-allelic variants.

(C) Comparison of GWAS p values between emVars and MPRA-nonallelic variants. p value calculated by two-sided Wilcoxon rank sum test.

(D) Comparison of |GWAS log2OR| between emVars and MPRA-nonallelic variants. p value calculated by two-sided Wilcoxon rank sum test.

(E) Percentage of emVars for mDisorder1 and mDisorder3 loci.

(F) The number of emVars per locus does not differ between mDisorder1 and mDisorder3 loci. p value calculated by two-sided Wilcoxon rank sum test.

(G) The number of emVars per locus stratified by mDisorder. p value calculated by linear regression.

(H) Percentage of emVars for each psychiatric disorder.

(I) Normalized chromatin accessibility counts of emVars and background variants in developing brain cell types. The cell types representing the excitatory

neuronal lineage (Ex neurons) and the remaining cell types used for comparison in (K) are color-coded at the top. p values at the top of each boxplot indicate the

significance of the difference in chromatin accessibility between emVars and background variants, calculated by the independent t test.

(J) Normalized chromatin accessibility counts of mDisorder1 and mDisorder3 emVars in developing brain cell types.

(legend continued on next page)
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(K) All emVars, mDisorder1 emVars, and mDisorder3 emVars exhibit higher chromatin accessibility counts in excitatory neurons (Ex neurons; earlyEN, dlEN, and

ulEN) compared with other cell types (remaining; RG, IPC, IN:Prog, IN:CGE, IN:MGE, AstroOligo, and Microglia). p values calculated by the paired t test.

(L) Chromatin accessibility of mDisorder3 emVars is more likely to encompass multiple developmental stages relative to mDisorder1 emVars. p value calculated

by two-sided Fisher’s exact test.

(M and N) TFBMs altered by mDisorder1 (M) and mDisorder3 (N) emVars and the TF expression level in HNPs are shown in normalized RNA counts. Odds ratio

represents the extent to which TFBMs are altered by emVars compared with background SNPs.

(O) mDisorder3 TFs show higher PPI connectivity than mDisorder1 TFs. p value calculated by Anderson-Darling k-Sample test.
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Figure S3. Statistical fine-mapping of emVars, related to Figure 2

(A) Overlap between emVars and credible SNPs identified by FINEMAP, SuSiE, and CAVIAR.

(B) Correlation of PIP values of all variants tested among three fine-mapping algorithms. R denotes the Pearson’s correlation coefficient.

(C) PIP distribution of emVars and MPRA-nonallelic variants, p = 0.28. p value calculated by two-sided Wilcoxon rank sum test.

(D) Proportion of variants with PIP > 0.1 across different credible set sizes for SuSiE. p values calculated by two-sided Fisher’s exact test.

(E and F) MPRA-allelic p values (E) and allelic effect sizes (F) between FM-emVars and nonFM-emVars across different credible set sizes. p values calculated by

two-sided Wilcoxon rank sum test.
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Figure S4. Characterization of genes mapped to emVars, related to Figure 3

(A) Overlap with meta-eQTL for mDisorder1 (left) andmDisorder3 (right) emVars. mDisorder1, percent of emVars located in mDisorder1 loci; mDisorder3, percent

of emVars located inmDisorder3 loci; eQTL, percent of (mDisorder1/mDisorder3) emVars that overlap with eQTLs; IDE, percent of eQTL-overlapping emVarswith

IDE; Coloc, percent of loci where IDE emVars show colocalization with cross-disorder GWS loci.

(B) The number of eGenes for mDisorder1 and mDisorder3 loci based on meta-eQTL (Meta, left), Bryois et al. (middle), and PsychENCODE (right) datasets.

p values calculated by two-sided Wilcoxon rank sum test.

(C) The number of cell types in which eGenes were detected for mDisorder1 andmDisorder3 loci using Bryois et al. and PsychENCODE eQTL resources. p values

calculated by two-sided Wilcoxon rank sum test.

(D) The number of emVar genes for mDisorder1 andmDisorder3 loci when combining all three genemapping approaches (All, left) andwhen using the ABCmodel

(ABC, right). p values calculated by two-sided Wilcoxon rank sum test.

(E) Local background genes show similar expression levels to emVar genes in HNPs. p values calculated by two-sided Wilcoxon rank sum test.

(F) GO analysis on local background genes.
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Figure S5. Transcriptomic impacts of emVars and MPRA-allelic/inactive variants in hiPSC-derived neurons, related to Figure 4

(A) Characterization of hiPSC-derived neurons derived from scRNA-seq data shows: no expression of pluripotency marker SOX2 (red), no expression of neural

progenitor marker PAX6 (light blue), high expression of early neuronal marker TUBB3 (yellow), high expression of mature neuronal markerMAP2 (green), and high

expression of glutamatergic neuronal marker SLC17A6 (dark blue).

(B) Immunofluorescence staining of hiPSC-derived neurons on day 11 of differentiation reveals clear expression of the pan-neuronal markers TUJ1, MAP2, and

NF-H (green). Additionally, the cortical neuronal marker SATB2 (red) and the excitatory neuronal marker PSD95 (red) are also prominently expressed.

(C) Locus plot of the DCC locus denoting locations and selection criteria for the two emVars (rs4513167 and rs4614799) and two MPRA-allelic/inactive variants

(rs8089270 and rs6508210) labeled accordingly on the plot. Top panel shows GWAS association statistics of the emVars (pink), MPRA-allelic/inactive variants

(pale yellow), and GWS variants (lime green). The second and third panels show significance and effect size of MPRA-allelic activity, respectively, for emVars

(pink) and MPRA-allelic/inactive variants (pale yellow). Bottom panel shows genes within a 1.7Mb window around the target variants. Gray bars highlight variant

locations along the gene track.

(D) Lollipop plot shows perturbation at the rs4513167 and rs4614799 emVar target sites led to significant downregulation of DCC in comparison to rs8089270 and

rs6508210MPRA-allelic/inactive target sites. Signed�log10pwas plotted for each variant in the DCC locus to represent both the direction of the effect as well as

significance, with FDR-adjusted p value significance being denoted by an asterisk.

(E) Correlation between element-level MPRA log2FC and CROP-seq effect size (GLM coefficient) for CROP-seq tested emVars and MPRA-allelic variants.
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Figure S6. Gene Ontology, developmental trajectory, and co-expression network of genes mapped to mDisorder1 and mDisorder3 emVars,

related to Figure 5
(A) GO analysis on mDisorder1 (top) and mDisorder3 (bottom) genes.

(B) Developmental expression trajectories (LOESS smooth curves) of mDisorder1 and mDisorder3 genes.

(C) Distribution of kME values for mDisorder1 and mDisorder3 genes. p value calculated by two-sided Wilcoxon rank sum test.
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