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ABSTRACT Epigenomic signatures from histone marks and transcription factor (TF)-binding sites have been used to annotate putative
gene regulatory regions. However, a direct comparison of these diverse annotations is missing, and it is unclear how genetic variation
within these annotations affects gene expression. Here, we compare five widely used annotations of active regulatory elements that
represent high densities of one or more relevant epigenomic marks—“super” and “typical” (nonsuper) enhancers, stretch enhancers,
high-occupancy target (HOT) regions, and broad domains—across the four matched human cell types for which they are available. We
observe that stretch and super enhancers cover cell type-specific enhancer “chromatin states,” whereas HOT regions and broad
domains comprise more ubiquitous promoter states. Expression quantitative trait loci (eQTL) in stretch enhancers have significantly
smaller effect sizes compared to those in HOT regions. Strikingly, chromatin accessibility QTL in stretch enhancers have significantly
larger effect sizes compared to those in HOT regions. These observations suggest that stretch enhancers could harbor genetically
primed chromatin to enable changes in TF binding, possibly to drive cell type-specific responses to environmental stimuli. Our results
suggest that current eQTL studies are relatively underpowered or could lack the appropriate environmental context to detect genetic
effects in the most cell type-specific “regulatory annotations,” which likely contributes to infrequent colocalization of eQTL with
genome-wide association study signals.
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GENOME-WIDE association studies (GWAS) have shown
thatmost of the genetic variants associatedwith disease-

related traits lie in nonprotein-coding regions (Hindorff et al.
2009). More importantly, these loci are specifically enriched
in enhancer elements of disease-relevant cell types (Maurano
et al. 2012; ENCODE Project Consortium 2012; Parker et al.
2013; Trynka et al. 2013; Corradin et al. 2014; Pasquali et al.
2014; Quang et al. 2015). This suggests that the majority of
disease-associated genetic variants modulate regulatory ele-
ments that can influence gene expression. Therefore, it is

essential to identify and understand the genetic signatures
and molecular function(s) of gene regulatory regions.

Epigenomic profiling, such as chromatin immunoprecipi-
tation followedbyhigh-throughput sequencing (ChIP-seq), of
histone modifications or transcription factors (TFs) that can
indicate regulatory activity in vivo has been effectively used to
predict the regulatory function of genomic regions. For ex-
ample, super enhancers have been defined in multiple cell
types as regions with high levels of the histone H3 lysine
27 acetylation (H3K27ac) mark (Hnisz et al. 2013). Putative
enhancer elements were identified from ChIP-seq peaks, and
elements within 12.5 kb of each other were stitched together.
After ranking these stitched regions based on the enhancer-
associated ChIP-seq signal (Figure 1A), a small number
(�3%) of identified regions that contained a large fraction
(.40%) of the ChIP-seq signal, observable as a steep rise in
the ChIP-seq signal curve (geometrical inflection point, Fig-
ure 1A) (Whyte et al. 2013), were termed super enhancers.
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These elements were at least an order of magnitude larger in
size than the remaining nonsuper enhancer elements (i.e.,
typical enhancers). This signal-based approach has been gen-
eralized as the rank ordering of super enhancers (ROSE)
algorithm (Lovén et al. 2013; Whyte et al. 2013) (Figure
1A). Super enhancers are thought to encompass multiple
constituent enhancer elements that collectively have high
regulatory potential and drive high expression of cell identity
regions (Whyte et al. 2013; Hnisz et al. 2013).

In another approach, ChIP-seq data for multiple histone
modifications were used to annotate the genome. A hidden
Markovmodel (HMM)-based approach identifieddistinct and
recurrent patterns in the ChIP-seq data, and segmented the
genome into chromatin states (Ernst et al. 2011; Ernst and
Kellis 2012). Analyzing chromatin states across diverse cell
types and tissues, the authors identified that the longest 10%
of contiguous enhancer chromatin states (enhancers$ 3 kb)
were highly cell type-specific, occurred near to genes with
highly cell type-specific gene ontology terms, and were
enriched for cell type-relevant disease and trait-associated
variants (Parker et al. 2013). These regions were referred
to as stretch enhancers (Parker et al. 2013) (Figure 1B) and
represent substantially large regions of enhancer-associated
chromatin.

Regulatory annotations have also been defined from TF
ChIP-seq profiling. Analysis of such data sets across cell types
revealed that .50% of TF-bound sites occurred in highly
occupied clusters that were not randomly distributed across
the genome (Moorman et al. 2006;modENCODE Consortium
et al. 2010; ENCODE Project Consortium 2012; Boyle et al.
2014). To identify regions where TF occupancies were higher
than expected by chance, one study first collapsed ChIP-seq
peaks for multiple TFs as observed binding regions (Fig-
ure 1C, blue bar). The expected regions of TF-binding or
“target regions” (Figure 1C, gray bars), and individual
TF-binding sites within these regions (Figure 1C, colored
triangles), were then randomly sampled 1000 times, while
keeping the number and size distributions equivalent to
those observed. Occupancies were scored based on ob-
served and expected collapsed binding sites (Figure 1C,
blue and green blocks, respectively); regions with the top
5% occupancies were classified as high-occupancy target
(HOT) regions (Figure 1C).

The histone H3 lysine 4 trimethyl (H3K4me3) mark is
associated with active and poised promoters (Bernstein
et al. 2006;Mikkelsen et al. 2007; Adli et al. 2010). Unusually
large regions of the H3K4me3 mark have been observed in
multiple cell types across humans, mice, and other species,
often spanning up to �60 kb (Adli et al. 2010; Benayoun
et al. 2014; Chen et al. 2015). Importantly, the broadest 5%
of H3K4me3 domains were found to mark genes with cell
type-specific functions (Benayoun et al. 2014; Thibodeau
et al. 2017). These regions have been termed broad domains
(Figure 1D).

These diverse methodologies identify genomic regions
with substantially high densities of epigenomic marks known

to be associated with gene regulation. These regions denote
important classes of regulatory elements, which show cell
type specificity, transcriptional activity in reporter assays, and
disease relevance based on GWAS SNP enrichments (Kvon
et al. 2012; Hnisz et al. 2013, 2015; Parker et al. 2013;
Benayoun et al. 2014; Boyle et al. 2014; Blinka et al. 2016;
Lin et al. 2016; Dave et al. 2017). Few studies have compared
the characteristics for subsets of these annotations, showing
some degree of overlap between HOT regions and super en-
hancers (Li et al. 2016), and chromatin interactions between
broad domains and super enhancers (Thibodeau et al. 2017).
However, the functional differences among these annota-
tions, especially how genetic variation in these elements af-
fects target gene expression, are unclear. To fill this gap, we
compared diverse characteristics of super, typical, and stretch
enhancers, HOT regions, and broad domains (hereafter col-
lectively referred to as regulatory annotations) in the only
four matched human cell types for which they are available:
the lymphoblastoid cell line (LCL) GM12878, human embry-
onic stem cell (hESC) line H1, leukemia cell line K562, and
hepatic carcinoma cell line HepG2. We used previously pub-
lished annotations as these were rigorously generated by
the respective authors and are widely used. Collectively,
these regulatory annotations represent the computational
and statistical integration of 245 ChIP-seq data sets (an
average of 61 ChIP-seq data sets per cell type). We report
annotation summary statistics and the proportion of
overlap with diverse chromatin states in these regions.
We measure enrichment for proximity to genes that are
expressed in a cell type-specific manner, and integrate ge-
netic regulatory data to measure enrichment for expres-
sion quantitative trait loci (eQTL). Finally, as measures of
strength of gene and chromatin accessibility regulation, we
compare the effect sizes of loci associated with gene ex-
pression (eQTL), DNase I hypersensitivity site (dsQTL),
and allelic bias in ATAC-sequencing (ATAC-seq) data.
Comparisons using these metrics allow us to quantify the
biological properties of these regulatory annotations.

Materials and Methods

Regulatory annotation sources

Regulatory annotations for the GM12878, H1 hESC, and
HepG2 cell types were downloaded from previously pub-
lished studies for HOT regions (Boyle et al. 2014), broad
domains (Benayoun et al. 2014), stretch enhancers
(Varshney et al. 2017), and super and typical enhancers
(Hnisz et al. 2013).

Summary statistics and overlaps between annotations,
chromatin states, and ATAC-seq peaks

Summary statistics, such as the number of features in each
annotation, segment size distribution, and percent genome
coverage (Figure 2, A–C), were calculated using custom
scripts (see GitHub). To compute overlap fractions between
all pairs of annotations shown in Figure 2, D and E, we
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calculated the base pair-level overlap between each pair us-
ing BEDtools intersect (Quinlan andHall 2010). For each pair
of annotation sets, we then calculated the Jaccard statistic by
dividing the total length of the intersection region with the
total length of the union region. To calculate the fraction of
regulatory annotation overlap with chromatin states in Sup-
plemental Material, Figure S2, we used chromatin states pre-
viously defined in the four cell types considered (Varshney
et al. 2017) and used BEDtools intersect. Stretch enhancer

annotations were also obtained from this previous study
(Varshney et al. 2017).

Enrichment for overlap between each pair of regulatory
annotations in Figure S1 was calculated using the Genomic
Association Tester (GAT) tool (Heger et al. 2013). To ask
if two sets of regulatory annotations overlap more than
that expected by chance, GAT randomly samples segments
of one regulatory annotation set from the genomic work-
space (hg19 chromosomes) and computes the expected

Figure 1 Description of the regulatory annotation calling procedures. (A) Super/typical enhancers are called by using the H3K27ac mark ChIP-seq
to assign enhancer elements, stitching elements within 12.5 kb and ranking the stitched segments based on H3K27ac levels. (B) Stretch enhancer
calling procedure involves analyzing patterns of multiple histone marks and assigning chromatin state segmentations using ChromHMM,
followed by identifying contiguous enhancer chromatin state segments longer than 3 kb. (C) HOT regions are defined as regions with higher
TF-binding occupancies than expected. (D) Broad domains are defined as the top 5% of the H3K4me3 ChIP-seq peaks by length. ChIP-seq,
chromatin immunoprecipitation-sequencing; HMM, hidden Markov model; HOT, high-occupancy target; ROSE, rank ordering of super en-
hancers; TF, transcription factor.
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Figure 2 Summary statistics and overlaps demonstrate differences in characteristics of regulatory annotations. For each annotation in each cell type
considered, shown are number of annotation segments (A), length distribution of segment annotations (B), and percent genomic coverage (C). Jaccard
statistic (base pair-level intersection/union) between each pair of annotations is shown within a cell type (D) and across cell types (E). HOT, high-
occupancy target.
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overlaps with the second regulatory annotation set. We used
10,000 GAT samplings for each regulatory annotation. The ob-
served overlap between segments and annotation is divided by
the expected overlap, and an empirical P-value is obtained.

Chromatin state information content analysis

We first compiled the average posterior probabilities of a
regulatory annotation segment to be called an enhancer or
promoter chromatin state. We utilized the previously pub-
lished 13-chromatin state ChromHMM model (also used to
define stretch enhancers) (Varshney et al. 2017), which also
outputs posterior probabilities for each 200-bp genomic seg-
ment to be called each of the 13 states in each of the four cell
types. We considered the sum of active enhancer 1 and 2,
weak enhancer, and genic enhancer posterior probabilities to
represent enhancer states, and averaged these values over all
the 200-bp tiles overlapping each annotation segment. We
considered active, weak, and flanking transcription start site
(TSS) states to denote promoter chromatin states. For exam-
ple, for a segment in GM12878 broad domains, we obtained
the average posterior probabilities for the region being
an enhancer or promoter state in a cell xsegment; cell for
cell 2fGM12878; H1; HepG2; and K562g To calculate the
information content, we first calculated the relative average
posterior probabilities, psegment; cell

psegment; cell ¼ xsegment; cell
� X4
cell¼1

xsegment; cell

Next, we calculated entropy of the segment as:

Entropysegment ¼ 2
X4
cell¼1

psegment; cell 3 log2ðpsegment; cellÞ

We know that entropy is maximized with all segments
have equal relative probabilities, or: psegment; cell ¼ 1

4 for
cell 2 fGM12878; H1; HepG2; and K562g

Max: Entropysegment ¼ 2
X4
cell¼1

1
4
3 log2

�
1
4

�
¼ 2

Information contentsegment;cell ¼
psegment; cell 3 ðMax: Entropysegment 2 EntropysegmentÞ

We then compared xsegment; cell with Information contentsegment; cell.
While high posterior probabilities for enhancer or promoter
states indicate preference for that state, high information con-
tent indicates cell type specificity of that chromatin state pref-
erence. When plotting Figure 3, to have the same x-axis ranges
for all facets for easier comparison (stretch enhancers only show
high mean posterior probabilities for enhance r states and low
posterior probabilities for promoter states due to their defini-
tion), we added one pseudocount in each corner for all facets.

Distance to nearest gene

We downloaded the Gencode V19 gene annotations from
ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_
19/gencode.v19.annotation.gtf.gz and obtained the TSS coor-
dinates for protein-coding genes. For each segment in
each annotation, we computed the distance to nearest

Figure 3 Enhancer and promoter chromatin state information content shows cell type specificity of regulatory annotations. Mean posterior
probability for an annotation segment to be called an enhancer (A) or promoter (B) chromatin state vs. the information content of that feature in
GM12878 cell type. The information content is calculated by comparing the mean posterior probabilities across the four cell types. HOT, high-
occupancy target.
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protein-coding gene TSS using BEDtools closest (Quinlan
and Hall 2010).

Enrichment of genetic variants in genomic features

Enrichment for GWAS variants for different traits and eQTL
identified in the LCL in regulatory annotations was calculated
using the genomic regulatory elements and GWAS overlap algo-
rithm (GREGOR)GREGOR (version 1.2.1) (Schmidt et al. 2015).
Since the causal SNP(s) for the traits are not known, GREGOR
allows consideration of the input lead SNP along with SNPs in
high linkage disequilibrium (LD) (based on the provided
R2THRESHOLD parameter) while computing overlaps with ge-
nomic features (regulatory annotations). Therefore, as input to
GREGOR, we supplied SNPs that were not in high LDwith each
other. We pruned the list of SNPs using the PLINK (v1.9) tool
(Purcell et al. 2007; Chang et al. 2015) –clump option and
1000 genomes phase 3 vcf files (downloaded from ftp://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502) as refer-
ence. For each input SNP, GREGOR selects�500 control SNPs
that match the input SNP for minor allele frequency (MAF),
distance to the nearest gene, and the number of SNPs in LD. Fold
enrichment is calculated as the number of loci at which an input
SNP (either lead SNP or SNP in high LD) overlaps the feature
over themeannumber of loci atwhich thematched control SNPs
(or SNPs in high LD) overlap the same features. This process
accounts for the length of the features, as longer features will
have more overlap by chance with control SNP sets.

Specificparameters for theGWASenrichmentwere:GWAS
variants for various traits were obtained from the National
Human Genome Research Institute-European Bioinformatics
Institute catalog (https://www.ebi.ac.uk/gwas/). Table S2
lists the individual GWAS studies for each disease/trait. We
used the following parameters: pruning to remove SNPs with
r2 . 0.2 for European population; GREGOR: r2 threshold =
0.8; LD window size = 1 Mb; minimum neighbor number =
500; and population = European.

Specific parameters for the LCL eQTL enrichment were:
LCLeQTLdata fromthegenotype tissueexpression (GTExV7)
studywas downloaded from theGTExwebsite (https://www.
gtexportal.org/home/datasets, filename GTEx_Analysis_
v7_eQTL.tar.gz). We used the following parameters: pruning
to remove SNPs with r2 . 0.8 for European population;
GREGOR: r2 threshold = 0.99; LD window size = 1 Mb; mini-
mum neighbor number = 500; and population = European.

We used different r2 thresholds for GWAS (r2 = 0.8) vs.
eQTL (r2 = 0.99) enrichment analyses because eQTL analy-
ses measure a molecular feature instead of a complex pheno-
type, and therefore have higher resolution to identify the
more likely causal variants.

Analysis of LCL-specific expression

We used an information theory approach (Schug et al. 2005;
He et al. 2014) to score genes based on LCL expression level
and specificity relative to the panel of 50 diverse GTEx tissues,
each of which had RNA-seq data for .25 samples. We down-
loadedRNA-seq data from theGTExV7 study from thewebsite

https://www.gtexportal.org/home/datasetsfilenameGTEx_
Analysis_2016-01-15_v7_RNASeQCv1.1.8_gene_median_
tpm.gct.gz. These data were in the form of median transcripts
per million (TPM) for each gene in each tissue. We considered
protein-coding genes and removed those that were lowly
expressed in LCL (median TPM . 0.15) to avoid potential
artifacts. We calculated the relative expression of each gene
(g) in LCL compared to all 50 tissues (t) as p:

pg; LCL ¼ xg; LCL
�X50

t¼1

xg;t

We next calculated the entropy for expression of each gene
across all 50 tissues as H:

Hg ¼ 2
X50
t¼1

pg;tlog2ðpg;tÞ

Following previous studies (Schug et al.2005;He et al.2014),we
defined LCL tissue expression specificity (Q) for each gene as:

Qg; LCL ¼ Hg2 log2ðpg; LCLÞ

To aid in interpretability, we divided Q for each gene by the
maximum observed Q and subtracted this value from 1, and
refer to this new score as the LCL expression specificity index
(LCL-ESI):

LCL ESIg ¼ 12
Qg;LCL
Qmax;LCL

LCL-ESI scores near zero represent lowly and/or ubiquitously
expressed genes, and scores near 1 represent genes that are
highly and specifically expressed in LCL.

Enrichment for distance to genes based on gene
expression specificity in LCL

We binned the protein-coding genes into quintiles based on
LCL-ESI, such that bin 5 included themost LCL-specific genes.
Each quintile bin contained N = 2753 protein-coding genes.
We then used BEDtools closest to calculate the distance to the
nearest protein-coding gene TSS for each bin, obtaining em-
pirical cumulative distribution functions (ECDFs) for each
regulatory annotation in each cell type. Since the regulatory
annotations vary in the number of segments, and will there-
fore have different probabilities of occurring near a TSS, the
distance to the nearest protein-coding gene TSS ECDFs
cannot be directly compared. Therefore, we obtained the
expected distance to the nearest protein-coding gene TSS
ECDF for each annotation by randomly sampling N =
2753 genes from across the five bins 10,000 times and calcu-
lating the distance to nearest gene. We then calculated the
TSS proximity enrichment for each annotation by dividing
the observed with the mean expected ECDF. Enrichment
therefore denotes the fold change in the observed fraction
of annotation segments within a certain distance of protein-
coding gene TSSs in a specific LCL-ESI bin over the mean
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fraction of segments at the same distance from the randomly
sampled genes. The 95% C.I.s for the enrichment values
were calculated as observed / (mean 6 1.96 * SE), where
SE = SEM expected fraction.

Enrichment to overlap eQTL based on expression
specificities of genes

We sorted the eQTL SNPs into quintiles based on the LCL-ESI
of the associated genes (eGene) and grouped them into five
equally sized bins, resulting in 585 eQTL in each bin. Bin
numbers represent eQTL that correspond to increasingly LCL-
specific genes, where bin 1 represents the least LCL-specific
and bin 5 represents the most LCL-specific genes. We calcu-
lated the enrichment for each eQTL set to overlap regulatory
annotations using GREGOR with the same parameters as
described above for the bulk set of LCL eQTL. To quantify
the trend of LCL eQTL enrichmentwith LCL eGene expression
specificity, we calculated the Spearman correlation of the
enrichment effect size expressed as log2(fold enrichment)
with the eQTL bin number using the cor() function from the
stats package (v3.5.1) in R (R Core Team 2015).

Gene expression and chromatin accessibility QTL effect
sizes in regulatory annotations

We used the b values or the slope of the linear regression as
the effect size of LCL and blood eQTL (GTEx V7), and dsQTL
(Degner et al. 2012). All of these QTL studies used inverse
rank-based normalization steps on the molecular features,
which enables direct comparison of the effect sizes across
the genome. Because low-MAF SNPs have low statistical
power to be detected as significant QTL at low effect sizes,
these SNPs are biased to have large QTL effect sizes. There-
fore, we removed QTL SNPs with MAF, 0.2. We pruned the
QTL SNPs to retain SNPs with r2 , 0.8 after sorting by
P-value of association as described above using PLINK
(Purcell et al. 2007; Chang et al. 2015). Since the causal SNP
for the QTL signal is unknown, we also considered SNPs in
high LD at r2 . 0.99 with the lead QTL SNPs, which were
obtained using vcftools (Danecek et al. 2011) and the 1000 ge-
nomes phase 3 reference vcf specified above. We observed
higher eQTL enrichment in annotations with increasing the r2

thresholds, which is indicative of a higher signal-to-noise ratio.
A previous study analyzing LCL eQTL also showed that func-
tional enrichment decreased rapidly from the best eQTL to-
ward lower ranked eQTL (Lappalainen et al. 2013). We
compared the absolute QTL effect sizes of loci (QTL index
SNP or SNP with r2 . 0.99 with the index SNP) that over-
lapped each GM12878 annotation. We used the Wilcoxon
rank sum test to identify significant differences between ef-
fect sizes of eQTL overlapping each annotation.

To test if there may be confounding from other genomic
properties, such as the distance between the eQTL eSNP to
eGene, and whether the number of SNPs in high LD with the
lead SNP could also influence the eQTL effect size, we calcu-
lated the contribution of the underlying regulatory annota-
tion on the effect size while accounting for these factors. We

modeled the eQTL effect size in a linear regression using the
Python statsmodels library, where we included a regulatory
annotation indicator variable-encoding eQTL overlap by a
stretch enhancer orHOT region annotation, and the following
two covariates: (1) absolute distance of the eQTL lead SNP to
its corresponding eGene TSS and (2) total number of SNPs in
high LD (r2 . 0.99 with the lead SNP) that overlapped the
annotation. eQTL that overlapped both annotations were not
considered. Summary statistics of this regression model are
presented in Table S1.

To calculate the statistical power for eQTL analysis after
Bonferroni correction based on a linear regression, we used
the powerEQTL.SLR function from the “powerEQTL” R
package (Dong et al. 2017) (v0.1.3; https://rdrr.io/cran/
powerEQTL/). For eQTL overlapping each annotation, we
used the eQTL effect sizes representing the 10th to 90th
percentile values and calculated power by using the follow-
ing parameters: MAF = 0.2, type I error rate = 0.0005, total
number of tests = 1,000,000, SD of the error term = 0.4,
and sample size N = 250.

Comparison of allelic bias effect sizes in annotations

To determine SNP allelic bias in GM12878 ATAC-seq data, we
used the publicly available data (Buenrostro et al.2013) listed
in Table S3. Adapters were trimmed using cta (v. 0.1.2;
https://github.com/ParkerLab/cta) and reads mapped to
hg19 using bwa mem (Li 2013) (default options except for
the -M flag; v. 0.7.15-r1140). Bam files were filtered for high-
quality autosomal read pairs using samtools (Li et al. 2009)
view (-f 3 -F 4 -F 8 -F 256 -F 2048 -q 30; v. 1.3.1). WASP (van
de Geijn et al. 2015) (version 0.2.1, commit 5a52185; using
python version 2.7.13) was used to adjust for reference map-
ping bias; for remapping the reads as part of the WASP pipe-
line, we used the same mapping and filtering parameters
described above for the initial mapping and filtering. Dupli-
cates were removed using WASP’s rmdup_pe.py script. We
used the phased GM12878 VCF file downloaded from ftp://
ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/
NISTv3.3.1/GRCh37/HG001_GRCh37_GIAB_highconf_CG-
IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.1_highconf_
phased.vcf.gz. To avoid potential artifacts associated with
double-counting alleles, overlapping read pairs were clipped
using bamUtil clipOverlap (v. 1.0.14; http://genome.sph.
umich.edu/wiki/BamUtil: clipOverlap). The bam files from
the samples in Table S3 were then merged to create a single
GM12878 bam file using samtools merge. We filtered for
heterozygous autosomal SNPs with minimum coverage of
30. Since the power to detect allelic bias depends upon the
read coverage at the SNP, SNPs with lower coverage are bi-
ased toward having higher effect sizes at any given level of
statistical significance. To prevent this type of bias, we ran-
domly downsampled reads at each heterozygous SNP to a
total of 30 reads with base quality of at least 20. We then
counted the number of reads containing each allele. We used
a two-tailed binomial test that accounted for reference allele
bias to evaluate the significance of the allelic bias at each SNP
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[as described previously (Varshney et al. 2017); implemented
in a custom perl script]. We did not test SNPs in regions black-
listed by the ENCODE Consortium because of poor mapp-
ability (wgEncodeDacMapabilityConsensusExcludable.bed
and wgEncodeDukeMapabilityRegionsExcludable.bed). We
then selected SNPs that show significant allelic bias at a
nominal threshold of binomial test P-value , 0.05 and used
BEDtools intersect to identify the set of nominally significant
SNPs overlapping each annotation. We defined the effect size
of allelic bias as the absolute deviation from expectation,
given by the absolute difference between the observed and
expected fraction of reads mapping to the reference allele.
We also compared the allelic bias effect sizes while only con-
sidering SNPs with MAF . 0.2.

Data availability

Workflows for analyses as described below were run using
Snakemake (Köster and Rahmann 2012). All analysis steps
and code to facilitate reproducibility of this work are openly
shared at the GitHub repository: https://github.com/ParkerLab/
regulatoryAnnotations_comparisons. Static version of scripts
and all processed data are deposited at Zenodo: https://
zenodo.org/record/1413623#.W8f2x1JRfpB. Supplemental
material available at Figshare: https://doi.org/10.25386/
genetics.7527773.

Results

Genomic distribution, coverage, and overlap of diverse
regulatory annotations

To catalog super, typical, stretch enhancers, HOT regions,
and broad domain regulatory annotations, we computed the
number of distinct segments marked by each annotation, the
length distribution of these segments, and the percentage of
the genome that is covered by each annotation across the four
cell types (Figure 2, A–C). Across all cell types, HOT regions
comprised the greatest number of segments (Figure 2A).
However, they were smaller in size (Figure 2B). Super en-
hancers comprised the longest segments among all annota-
tions across the studied cell types (Figure 2B), likely due to
stitching together H3K27ac peaks that are separated by
#12.5 kb. All pairwise comparisons between segment lengths
for annotations were significant (adjusted P, 2.23 10206) in
each of the cell types according to the Wilcoxon rank sum test
followed by Bonferroni correction, highlighting the differences
across annotations.While the percent genome covered by each
annotation varied across cell types, these regions consistently
covered ,2% of the genome (Figure 2C).

Next, we calculated the fraction of overlap between all
pairs of regulatory annotations.We report the Jaccard statistic
(base pair-level intersection/union) for overlap between two
annotations (Figure 2, D and E). We compare overlaps be-
tween different annotations within a cell type (Figure 2D)
and between a single annotation (e.g., broad domains) across
cell types (Figure 2E). Despite their relatively low genomic
coverage (0.5% of the genome), super enhancer segments

show considerable overlaps with stretch enhancer segments
in the same cell type (Figure 2D), which are significantly
enriched (P = 0.0001, Figure S1). This is in agreement with
both of these annotations representing large domains of ac-
tive enhancers marked with H3K27ac. HOT regions show
extensive overlaps across cell types (Figure 2E), indicating
that these regions are less cell type-specific. Broad domains
display a similar pattern, though to a less pronounced degree
(Figure 2E). Conversely, stretch, super, and typical enhancers
show low overlaps across cell types, which indicates a higher
degree of cell type specificity (Figure 2E).

Regulatory annotations comprise distinct
chromatin states

Most regulatory annotations are defined using histone mod-
ification ChIP-seq profiles. However, the differences in their
underlying chromatin landscape are unclear. We compared
each regulatory annotation with previously reported chroma-
tin state segmentations across all four cell types (Varshney
et al. 2017) (Figure S2). Such comparisons are informative
because the chromatin states (ChromHMM states) have been
generated from an integrative analysis of ChIP-seq data for
five diverse histone marks (H3K4me1, H3K4me3, H3K27ac,
H3K36me3, andH3K27me3) resulting in 13 chromatin states
encompassing active promoter (regions enriched for
H3K4me3 and H3K27ac marks), enhancer (regions enriched
for H3K4me1 and H3K27ac marks), transcribed (regions
enriched for H3K36me3), repressed (regions enriched for
H3K27me3 marks), and quiescent states (regions lacking
marks) (Varshney et al. 2017). Different enhancer states,
such as active enhancer 1 and 2, represent states with differ-
ent levels of H3K4me1 and H3K27ac mark enrichment, and
have different genomic coverage (Varshney et al. 2017). For
each regulatory annotation in a particular cell type, we com-
puted the fraction of overlap with chromatin states in the
corresponding cell type and across the other three cell types
(Figure S2). Generally, HOT regions and broad domains over-
lap with promoter-related chromatin states consistently
across all four cell types, irrespective of which cell type they
were called in (Figure S2, facets a1-4, b1-4). In contrast,
stretch, super, and typical enhancers show a higher fraction
of overlap with enhancer-related chromatin states in the
corresponding cell type. Notably, stretch/super/typical en-
hancer regions defined in one cell type constitute mostly non-
enhancer chromatin states in other cell types (Figure S2,
facets c1-4, d1-4, e1-4), which further reinforces the cell
type-specific nature of these annotations.

We then sought to quantify the cell type specificity of
enhancer and promoter chromatin states in each regulatory
annotation. For each segment of a regulatory annotation, we
computed the ChromHMM posterior probabilities of being
called an enhancer or active promoter state averaged over
200-bp intervals, denoting the chromatin state preference
of that segment in each cell of the four cell types. We then
computed the information content encoded by these proba-
bilities across cell types (see Materials and Methods). High
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information content indicates high specificities of chromatin
states. We observe that stretch enhancers constitute high in-
formation and a high-probability enhancer chromatin state
(Figure 3A showing GM12878 annotations and Figure S3
showing annotations in all cell types), whereas HOT regions
constitute low information and a high-probability promoter
state (Figure 3B showing GM12878 annotations and Figure
S4 showing annotations in all cell types). These analyses
highlight the differences in the underlying chromatin context
and cell type specificities for these annotations.

Regulatory annotations exhibit distinct cell type
specificity of gene regulatory function

Regulatory annotations have been linked to common diseases
basedontheirenrichment tooverlapGWASvariants.Wedirectly
comparedGWASSNPenrichments for diseases that are relevant
to the cell types represented here—such as Crohn’s disease,
rheumatoid arthritis, and other autoimmune traits (relevant
for LCL GM12878), and metabolic traits such as body mass in-
dex (BMI) and T2D (relevant for liver hepatocyte cell line
HepG2)—in each regulatory annotation. Super and stretch en-
hancers in GM12878 (LCL) were generally the most enriched
for autoimmune-related trait GWAS SNPs (Figure S5), whereas
stretch enhancers and broad domains in HepG2 were enriched
for BMI and T2D GWAS SNPs (Figure S5).

We next assessed the gene regulatory potential for these
annotations using several diverse comparisons. We first mea-
sured thedistance to thenearest protein-coding gene from the
ends of each annotation segment, and found that broad
domain and super enhancer segments tend to occur in closer
proximity to gene TSSs relative to other annotations (Figure
S6). Because a regulatory element does not always target the
nearest gene, we next utilized cis-eQTL, which unambigu-
ously identifies target genes by associating genetic variation
(SNPs) with gene expression. We asked if regulatory anno-
tations overlapped cis-eQTL, which were previously identi-
fied in LCLs in the genotype tissue expression (GTEx)
project (GTEx Consortium 2017). HOT regions in the LCL
GM12878 showed the highest enrichment to overlap LCL
eQTL (Figure S7), likely because these represent active pro-
moter regions with high TF-binding activity and lie close to
protein-coding genes (Figure S6). However, HOT regions in
control cell types (i.e., non-LCL) were similarly enriched to
overlap LCL eQTL, which highlights the similarity of HOT
regions across cell types.

We hypothesized that significant enrichment of LCL eQTL
in regulatory annotations of unrelated cell types is largely
driven by eQTL formoreubiquitously expressed genes. To test
this hypothesis, we classified protein-coding genes by their
specificity of expression in LCLs using RNA-seq data for 50 di-
verse tissues from the GTEx project (GTEx Consortium 2017)
and an information theory approach (Schug et al. 2005; He
et al. 2014; Scott et al. 2016; Varshney et al. 2017). We
calculated the expression specificities of genes by comparing
the relative expression of each gene in LCLs with the entropy
of the gene across all 50 tissues in the panel. We defined the

LCL expression specificity index (LCL-ESI), which ranges
from 0 (i.e., low or ubiquitously expressed genes) to 1 (i.e.,
highly and specifically expressed genes in LCL). We binned
the genes into quintiles based on this LCL-ESI measure, such
that bin 5 represents genes with the highest LCL-ESI scores
(Figure S8). We then asked which regulatory annotations
occurred closer to cell type-specific genes. We calculated
the distance to the nearest TSS for genes in each LCL-ESI
bin, which revealed that annotation segments occur closer
to genes with higher LCL-ESI (Figure S9, colored lines). To
control for the different number of segments in each an-
notation, we constructed a null expectation by randomly
sampling genes from across the five LCL-ESI bins and calcu-
lating the distribution of distances to the nearest gene
TSS (Figure S9, black). We then normalized the observed
distance distribution for each LCL-ESI bin gene set with that
from the null set and used this as a controlled measure of TSS
proximity enrichment (Figure 4A). We observed that all reg-
ulatory annotations are depleted from occurring close to non-
specific genes (LCL-ESI bin 1) and enriched to occur closer to
highly specific genes (LCL-ESI bin 5). Notably, super, stretch,
and typical enhancers and broad domains were more
enriched to occur near the most cell type-specific genes than
HOT regions (Figure 4A). As expected, enrichments for all
annotations to occur within larger distances to TSSs (order of
mega bases) converge to 1 (Figure 4A), indicating a properly
controlled proximity enrichment test.

We next asked which regulatory annotations were more
enriched to overlap eQTL of more cell type-specific genes. We
obtained sets of LCL eQTL (GTEx Consortium 2017) for genes
in each LCL-ESI bin and calculated the enrichment of each
eQTL set in the regulatory annotations. Indeed, we observed
that GM12878 regulatory annotations were increasingly
enriched to overlap eQTL for highly LCL-specific genes (Figure
S10) and that the fold enrichment for eQTL in a bin is posi-
tively correlated with the LCL-ESI bin number (Figure 4B,
GM12878 facet). Notably, stretch enhancers and, in some in-
stances, typical enhancers in non-LCL cell types showed strong
negative correlations of LCL eQTL fold enrichment with LCL-
ESI bin number (Figure 4B), indicating higher cell type spec-
ificity for stretch enhancers. This is consistentwith the previous
histone modification-based chromatin state analyses (Figure 3
and Figures S2–S5), which also highlight the cell type speci-
ficity of stretch enhancers. HOT regions in non-LCL cell types
show high enrichments for eQTL in less cell type-specific LCL-
ESI bins 1–3 (Figure S10). This analysis shows that high en-
richments of LCL eQTL in non-LCL annotations (Figure S7)
were driven by eQTL for more ubiquitously expressed genes.
These analyses further emphasize the differences in the cell
type specificities of these regulatory annotations.

Patterns of expression and chromatin QTL effect sizes in
annotations suggest regulatory buffering

While enriched overlap with eQTL demonstrates genetic
regulatory potential for each annotation (Figure 4B and
Figures S7 and S10), this analysis does not distinguish the
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strength of these genetic effects on gene expression. To un-
derstand this, we compared the absolute effect sizes (b val-
ues from the linear regression models) of LCL eQTL
overlapping different GM12878 regulatory annotations. We
excluded SNPs with MAF , 0.2, since these SNPs have sub-
stantially reduced statistical power and are therefore biased
to be detected as eQTL only with higher effect sizes (Figure
S11). We observed that LCL eQTL in GM12878 stretch en-
hancers have nominally significantly lower (P=0.032) effect
sizes than GM12878 HOT regions; however, this comparison
does not survive a Bonferroni correction accounting for
10 pairwise tests (Figure S12A). To achieve higher power
for such an analysis, we utilized the larger GTEx blood eQTL
data set and compared effect sizes in annotations of the blood
relevant leukemia cell line K562. Consistent with the LCL
analysis, we observed that effect sizes of blood eQTL in
K562 stretch enhancers were significantly lower than those
of HOT regions (Bonferroni corrected P = 0.0082, Figure
5A). We note that the differences in effect sizes for LCL and
blood eQTL are largely due to different sample sizes, and
therefore power to detect eQTL. To further control for poten-
tial sources of bias in this analysis, we next asked if this effect
size difference was driven by distance to the eQTL target
gene’s TSS or the number of SNPs in high LD with the index

eQTL SNP. We modeled the eQTL absolute effect size using
linear regression, including these additional two covariates
alongwith an indicator variable encoding stretch enhancer or
HOT region annotation (eQTL overlapping both annotations
were not considered). We observed a significant effect on
the indicator variable (P= 0.005, regression coefficient =
20.0521, Table S1), which confirms the smaller effect
size of eQTL in stretch enhancers, independent of TSS dis-
tance and LD structure.

Differences in effect sizes of eQTL in stretch enhancers
compared to HOT regions directly translates to differences in
the statistical power to detect eQTL residing in these regulatory
annotations, which have remarkably distinct cell type specific-
ities. To quantify this, we performed a power calculation for the
10th through the 90th percentiles of the eQTL effect size distri-
bution observed in each annotation, keeping other parameters
such as sample size,MAF, type 1 error rate, number of tests, and
the SD of the error term constant. We show that variants in
stretch enhancers have nearly uniform lower power to be de-
tected as eQTL across the effect size distribution (Figure 5B and
Figure S12B). Indeed, stretch enhancers showed lower enrich-
ment to overlap eQTL thanHOT regions (Figure S7). Therefore,
identifying eQTL in cell type-specific stretch enhancers will re-
quire larger sample sizes.

Figure 4 Proximity to protein-coding genes and enrichment for eQTL highlight functions of regulatory annotations. (A) Enrichment for regulatory
annotation elements in GM12878 to lie within distances (x-axis) of TSSs of protein-coding genes binned by gene expression specificity in LCLs (LCL-ESI).
Enrichment calculated in comparison to 10,000 random samplings, 95% C.I.s shown. (B) Pearson correlation of LCL-ESI gene quintile bin numbers
(increasing LCL specificity) with the fold enrichment of eQTL of these genes in regulatory annotations. Positive correlation shows that the eQTL for more
LCL-specific genes are more enriched in annotations. Significant (P , 0.05) correlations are marked with “*.” eQTL, expression QTL; ESI, expression
specificity index; HOT, high-occupancy target; LCL, lymphoblastoid cell line; TSS, transcription start site.
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Among other mechanisms, eQTL SNPs can influence gene
expression in vivo by modulating TF binding. TFs can either
bind in nucleosome-depleted regions or bind and displace
nucleosomes (pioneer factors) (Gross and Garrard 1988;
Wang et al. 2012; Buenrostro et al. 2013). Therefore, QTL
analysis of chromatin accessibility using dsQTL can assess
variant effects on regulatory element activity. Interestingly,
we found that LCL dsQTL (Degner et al. 2012) in stretch
enhancers have significantly higher effect sizes than those
in HOT regions (Bonferroni corrected P = 6.2 3 10208, Fig-
ure 5C), which is the opposite of what we observed for eQTL
effects (Figure 5A). dsQTL in super enhancers and typical
enhancers also have higher effect sizes than those in HOT
regions (Bonferroni adjusted P= 0.013, 2.23 10205, respec-
tively). To examine the effect of genetic variation on open
chromatin at the resolution of an individual sample, we quan-
tified allelic bias in the assay for transposase-accessible chro-
matin followed by sequencing (ATAC-seq) data available in
GM12878 (Buenrostro et al. 2013). Allelic bias measured by
quantifying the ATAC-seq signal over each of the two alleles
at a heterozygous site is an indicator of allelic differences in
chromatin accessibility at a specific locus. To control for dif-
ferent power to detect allelic bias, we uniformly down-
sampled all SNPs to 303 coverage. We included all SNPs
from the full range of MAFs with nominally significant allelic
bias (P, 0.05) since the SNP MAF does not affect the power
to detect allelic bias in an individual sample. Consistent
with the dsQTL results, we observed that SNPs in stretch

enhancers show a significantly larger allelic bias effect size
(see Materials and Methods) compared to HOT regions
(Bonferroni corrected P = 0.0051, Figure 5D). This trend
remains after removing SNPs with MAF , 0.2, similar to
the dsQTL analyses above (Figure S13), indicating that
SNP MAF does not confound this analysis. No other pairwise
tests were significant. Collectively, these observations show
that stretch enhancers harbor variants that have strong ge-
netic effects on chromatin changes, but these are buffered at
the level of transcription.

Discussion

We performed a comparative analysis of five regulatory an-
notations, all based on diverse epigenomic signatures, to
better understand their regulatory capacity and downstream
transcriptional effects. We observed that stretch, super, and
typical enhancers overlap enhancer chromatin states in the
corresponding cell type, but overlap nonenhancer chromatin
states in unrelated cell types, supporting the cell type spec-
ificity of these regulatory elements. These observations high-
light H3K27ac as a good proxy for cell type-specific regulatory
function. Annotations based on the H3K4me3 mark (broad
domains) andTF binding (HOT regions) showa large fraction
(.40%) of overlaps with promoter chromatin states across
different cell types. Consistent with our observations, a recent
study in the fly reported that regions bound by large num-
bers of TFs (such as HOT regions) are less cell type-specific

Figure 5 Gene expression and chroma-
tin QTL effect size differences in regula-
tory annotations suggest regulatory
buffering. (A) Distribution of eQTL ef-
fect sizes for blood eQTL (GTEx v7,
10% FDR) in K562 regulatory annota-
tions. (B) Power to detect eQTL after
Bonferroni correction at effect sizes cor-
responding with the 10th through the
90th percentile observed for each anno-
tation [shown in (A)]. Other constant
parameters for the power calculation
are shown in box. (C) Distribution of
effect sizes for LCL DNase QTL in
GM12878 regulatory annotations. (D)
Distribution of effect sizes (deviation
from expectation) for SNPs with signifi-
cant allelic bias in GM12878 ATAC-seq
(P , 0.05, minimum coverage at SNP =
30, reads downsampled to 30, see
Materials and Methods) in GM12878
regulatory annotations. P-values from
Wilcoxon rank sum tests, after a Bonfer-
roni correction accounting for 10 pair-
wise tests. Number of QTL/allelic biased
SNPs overlapping each regulatory anno-
tation is shown in parentheses in (A, C,
and D). ATAC-seq, Assay for transpo-

sase accessible chromatin-sequencing; eQTL, expression quantitative trait loci; FDR, false discovery rate; HOT, high-occupancy target; LCL, lympho-
blastoid cell line; MAF, minor allele frequency.
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(Kudron et al. 2017). While the diverse ChIP-seq data used to
define regulatory annotations comes from different individ-
uals, we note that future studies using ChIP-seq data from the
same individual might have even higher power to detect cell
type-specific differences.

Analysis of genetic effects on the gene regulatory function
of annotations revealed that blood eQTL in K562 stretch
enhancers have significantly lower effect sizes compared to
HOT regions. Stretch/super enhancers are known to regulate
more cell type-specific genes for which the expression levels
may be tightly controlled under basal conditions. Multiple
studies have observed redundancy in gene regulation by in-
dividual components of super enhancers (Hay et al. 2016;
Shin et al. 2016; Moorthy et al. 2017; Xie et al. 2017). Such
studies then contested the notion of super/stretch enhancers
as a distinct entity, arguing that these annotations are no
different from other enhancers. However, here we offer an
alternative explanation: that enhancer buffering, which re-
sults from functional redundancy, could be a mechanism for
tighter control of gene expression under basal conditions and
would explain the low observed eQTL effect sizes. These
regions could encode regulatory plasticity, allowing critical
genes to respond to multiple (patho)physiologic stimuli. This
would lead to smaller effects in the steady state, whereas
each component could contribute to tight but pliable regula-
tion by different signaling pathways. Therefore, the outcome
of perturbing enhancer components might be different in re-
sponse to different environmental stimuli, and existing stud-
ies that probe basal conditions would not detect such effects.

In contrast, genetic variants associated with open chroma-
tin in stretch enhancers show significantly higher effects than
those in HOT regions, both within a single sample (allelic
bias in ATAC-seq) and across multiple samples (dsQTL). Our
results present an apparent discrepancy in that genetic var-
iants in stretch enhancers display higher chromatinQTL effect
sizes and slightly but significantly lower basal expression QTL
effect sizes when compared to HOT regions. It is possible that
the large constellation of TFs bound inHOT regions (ENCODE
Project Consortium 2012; Kudron et al. 2017) maintain more
constitutively open chromatin, which would be less suscepti-
ble to effects of individual genetic variants. This concept of
buffering has been demonstrated previously, where a smaller
fraction of SNPs in strong DNase peaks showed significant
allelic bias compared to those in weak DNase peaks
(Maurano et al. 2015). We reason that chromatin accessibil-
ity, which influences TF binding, could be a molecular feature
of the initial response cascade to propagate gene expression
changes under stimulatory conditions. We hypothesize that
the larger genetic effects on stretch enhancer chromatin ac-
cessibility will propagate to gene expression effects under
specific environmental conditions. Under this hypothesis,
we expect that many dsQTL will be associated with gene
expression under specific stimuli (or response-specific eQTL)
rather than steady state (basal eQTL). In support of this, a
recent study in the macrophage model system (Alasoo et al.
2018) showed that �60% of eQTL that manifest upon

stimulation are chromatin QTL in the basal state. Unfortu-
nately, currently available response expression or chromatin
QTL data sets are underpowered for a comparison of effect
sizes in the regulatory annotations analyzed here, owing to
low sample sizes.

Our observations could help reconcile why many cis-eQTL
are shared across cell types and infrequently colocalize with
GWAS signals (GTEx Consortium 2017; Huang et al. 2017;
Liu et al. 2017). We have shown that while stretch enhancers
are enriched to overlap GWAS loci for cell type-relevant
traits, variants in these regions are underpowered to be iden-
tified as eQTL. Current eQTL studies are biased to identify
eQTL for more broadly expressed genes. Our results suggest
that larger sample sizes will be needed to identify cell type-
specific eQTL. Additionally, our results suggest the need to
perform response eQTL studies under carefully selected en-
vironmental conditions.
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