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Genome-wide association studies have been successful in identifying single nucleotide polymorphisms (SNPs) associated with
a large number of phenotypes. However, an associated SNP is likely part of a larger region of linkage disequilibrium. This
makes it difficult to precisely identify the SNPs that have a biological link with the phenotype. We have systematically
investigated the association of multiple types of ENCODE data with disease-associated SNPs and show that there is significant
enrichment for functional SNPs among the currently identified associations. This enrichment is strongest when integrating
multiple sources of functional information and when highest confidence disease-associated SNPs are used. We propose an
approach that integrates multiple types of functional data generated by the ENCODE Consortium to help identify
‘‘functional SNPs’’ that may be associated with the disease phenotype. Our approach generates putative functional anno-
tations for up to 80% of all previously reported associations. We show that for most associations, the functional SNP most
strongly supported by experimental evidence is a SNP in linkage disequilibrium with the reported association rather than the
reported SNP itself. Our results show that the experimental data sets generated by the ENCODE Consortium can be
successfully used to suggest functional hypotheses for variants associated with diseases and other phenotypes.

[Supplemental material is available for this article.]

Genome-wide association studies (GWAS) have led to the identifi-

cation of thousands of single nucleotide polymorphisms (SNPs) as-

sociated with a large number of phenotypes (Hindorff et al. 2009;

Manolio 2010). These studies use genotyping platforms that mea-

sure on the order of 1 million SNPs to detect loci that have sta-

tistically significant differences in genotype frequencies between

individuals who have a phenotype of interest and the general

population. Although GWAS provide a list of SNPs that are statisti-

cally associated with a phenotype of interest, they do not offer any

direct evidence about the biological processes that link the associ-

ated variant to the phenotype. A major challenge in the inter-

pretation of GWAS results comes from the fact that most detected

associations point to larger regions of correlated variants. SNPs that

are located in close proximity in the genome tend to be in linkage

disequilibrium (LD) with each other (The International HapMap

Consortium 2005, 2007), and only a few SNPs per linkage disequi-

librium region are measured on a given genotyping platform.

Regions of strong linkage disequilibrium can be large, and SNPs

associated with a phenotype have been found to be in perfect

linkage disequilibrium with SNPs several hundred kilobases away.

Although sequencing can be used to assess associated regions more

precisely (Sanna et al. 2011), using sequence information alone is

insufficient to distinguish among SNPs that are in perfect linkage

disequilibrium with each other in the studied population, and thus

equally associated with the phenotype.

Various approaches have been developed to identify variants

that are likely to play an important biological role. Most of these

approaches focus on the interpretation of coding or other SNPs in

transcribed regions (Ng and Henikoff 2003; Adzhubei et al. 2010;

Saccone et al. 2010). The vast majority of associated SNPs identi-

fied in GWAS, however, are in nontranscribed regions, and it is

likely that the underlying mechanism linking them to the phe-

notype is regulatory. SNPs that influence gene expression (ex-

pression quantitative trait loci, eQTLs) (Stranger et al. 2007; Schadt

et al. 2008) have been shown to be significantly enriched for GWAS

associations (Nicolae et al. 2010; Zhong et al. 2010). Although eQTLs

can be used to identify the downstream targets that are likely to be

affected by associations identified in a GWAS, they are still based

on genotyping methods and therefore also point to regions of

linkage disequilibrium rather than to individual SNPs. Methods for

identifying SNPs that overlap regulatory elements, such as tran-

scription factor binding sites, are therefore necessary. Approaches

based on known transcription factor binding motifs (Xu and Taylor

2009; Macintyre et al. 2010) have been successfully used to refine

GWAS results and identify specific loci that have a functional role

(Jarinova et al. 2009; Landers et al. 2009). However, the presence

of a motif does not imply that a transcription factor is necessarily

binding in vivo.

High-throughput functional assays such as chromatin im-

munoprecipitation assays followed by sequencing (ChIP-seq)

(Johnson et al. 2007; Robertson et al. 2007) and DNase I–hyper-

sensitive site (Gross and Garrard 1988) identification by sequenc-

ing (DNase-seq) (Crawford et al. 2006; Boyle et al. 2008) can ex-

perimentally detect functional regions such as transcription factor

binding sites. Experimental evidence shows that the presence of

SNPs in these regions leads to differences in transcription factor

binding between individuals (Kasowski et al. 2010). A SNP that

overlaps an experimentally detected transcription factor binding

site and is in strong linkage disequilibrium with a SNP associated

with a phenotype is thus more likely to play a biological role than

other SNPs in the associated region for which there is no evidence
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of overlap with any functional data. Several recent analyses of as-

sociated regions use these types of functional data in order to

identify functional loci in individual diseases (Lou et al. 2009;

Carvajal-Carmona et al. 2011; Harismendy et al. 2011; Paul et al.

2011). A recent study of chromatin marks in nine different cell

lines produced a genome-wide map of regulatory elements and

showed a twofold enrichment for predicted enhancers among the

associated SNPs from GWAS (Ernst et al. 2011). These examples

illustrate the power of combining statistical associations between

a region of the genome and a phenotype together with functional

data in order to generate hypotheses about the mechanism un-

derlying the association.

The main goal of the Encyclopedia of DNA Elements

(ENCODE) project is to identify all functional elements in the

human genome, including coding and noncoding transcripts,

marks of accessible chromatin, and protein binding-sites (The

ENCODE Project Consortium 2004, 2007, 2011). The data sets

generated by the ENCODE Consortium are therefore particularly

well suited for the functional interpretation of GWAS results. To

date, a total of 147 different cell types have been studied using

a wide variety of experimental assays (The ENCODE Project Con-

sortium 2012). Chromatin accessibility has been studied using

DNase-seq, which led to the identification of 2.89 million DNase

I–hypersensitive sites that may exhibit regulatory function. DNase

footprinting (Hesselberth et al. 2009; Boyle et al. 2011; Pique-Regi

et al. 2011) was used to detect binding between proteins and the

genome at a nucleotide resolution. ChIP-seq experiments were con-

ducted for a total of 119 transcription factors and other DNA-binding

proteins. Together these data provide a rich source of information

that can be used to associate GWAS annotations with functional data.

In this work, we show that data generated by the ENCODE

Consortium can be successfully used to functionally annotate as-

sociations previously identified in genome-wide association stud-

ies. We combine multiple sources of evidence in order to identify

SNPs that are located in a functional region of the genome and are

associated with a phenotype. We show that a majority of known

GWAS associations overlap a functional region or are in strong

linkage disequilibrium with a SNP overlapping a functional region.

We find that for a majority of associations, the SNP whose func-

tional role is most strongly supported by ENCODE data is a SNP in

linkage disequilibrium with the reported SNP, not the genotyped

SNP reported in the association study. We show that there is sig-

nificant overall enrichment for regulatory function in disease-

associated regions and that combining multiple sources of evidence

leads to stronger enrichment. We use information from RegulomeDB

(Boyle et al. 2012), a database designed for fast annotation of SNPs

that combines ENCODE data sets (ChIP-seq peaks, DNase I hy-

persensitivity peaks, DNase I footprints) with additional data

sources (ChIP-seq data from the NCBI Sequence Read Archive,

conserved motifs, eQTLs, and experimentally validated functional

SNPs). Using these publicly available resources makes the approach

presented herein easily applicable to the analysis of any future

GWAS study.

Results
We use linkage disequilibrium information in order to integrate

GWAS results with ENCODE data and eQTLs. We call functional

SNP any SNP that appears in a region identified as associated with

a biochemical event in at least one ENCODE cell line. Functional

SNPs can be further subdivided into SNPs that overlap coding or

noncoding transcripts, and SNPs that appear in regions identified

as potentially regulatory, such as ChIP-seq peaks and DNase I–

hypersensitive sites. We call the SNPs that are reported to be

statistically associated with a phenotype lead SNPs. For each lead

SNP, we first determine whether the lead SNP itself is a functional

SNP, then find all functional SNPs that are in strong linkage dis-

equilibrium with the lead SNP. We integrate eQTL information in

a similar way, by checking whether the lead SNP or a SNP in strong

linkage disequilibrium with the lead SNP has been associated with

a change in gene expression.

Figure 1 illustrates our approach by describing a scenario in

which a lead SNP is in strong linkage disequilibrium with a func-

tional SNP that overlaps a transcription factor binding site, as well

as with a third SNP that is an eQTL. If neither the lead SNP nor the

eQTL SNP overlaps a functional region, then the functional SNP is

more likely to be the SNP that plays a biological role in the phe-

notype than either of the SNPs that were genotyped. An extreme

example would be the case in which all three SNPs are in perfect

linkage disequilibrium, but only the associated SNP was present on

the genotyping platform used in the GWAS in which the associa-

tion was found, and only the eQTL SNP was present on the geno-

typing platform used in the eQTL study. In this scenario, the

functional SNP would be associated equally strongly with the

disease and with the change in gene expression than the reported

association and eQTL SNPs, respectively. To show the potential of

this approach, we analyze a set of 5694 curated associations from

the NHGRI GWAS catalog (Hindorff et al. 2009) that represent

Figure 1. Schematic overview of the functional SNP approach. This figure
illustrates the approach we use to identify functional SNPs. Three different
types of regulatory data are represented for an area of the genome: motif-
based predictions, DNase I hypersensitivity peaks, and ChIP-seq peaks. This
region contains six SNPs. SNP1 is associated with a phenotype in a genome-
wide association study. SNP3 is an eQTL associated with changes in gene
expression in a different study. SNP6 overlaps a predicted motif, a DNase I
hypersensitivity peak, and a ChIP-seq peak. There are, therefore, multiple
sources of evidence that SNP6 is in a regulatory region. Furthermore,
SNP6 is in perfect linkage disequilibrium (r 2 = 1.0) with SNP1 and SNP3,
meaning that there is transitive evidence due to the LD that SNP6 is also
associated with the phenotype and is also an eQTL. SNP6 is therefore the
most likely functional SNP in this associated region.
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a total of 4724 distinct SNPs associated with a total of 470 different

phenotypes (for details, see Methods).

Lead SNP annotation

We first annotated each lead SNP with transcription information

from GENCODE v7 and regulatory information from RegulomeDB.

Overall, 44.8% of all lead SNPs overlap with some ENCODE data,

making them functional SNPs according to our definition, and

13.1% of the lead SNPs are supported by more than one type of

functional evidence. Specifically, 223 lead SNPs (4.7%) overlap

coding regions, 146 (3.1%) overlap with the noncoding part of an

exon, 1714 (36.3%) overlap with a DNase I peak in at least one cell

line, 355 (7.5%) overlap with a DNase I footprint, and 938 (19.9%)

overlap with a ChIP-seq peak for at least one of the assessed pro-

teins in at least one cell line. Figure 2 shows the fraction of lead

SNPs supported by different sources of evidence. Thus, we find that

many GWAS SNPs overlap ENCODE data.

Linkage disequilibrium

For each lead SNP, we next located the set of SNPs that are in strong

linkage disequilibrium (r2 $ 0.8) with the lead SNP in all four

HapMap 2 populations, and annotate each SNP in this set. As

expected, the fraction of lead SNPs in strong linkage disequilib-

rium with a SNP overlapping each type of functional evidence is

larger than when considering lead SNPs alone (Fig. 2), and 58% of

all associations are in strong linkage disequilibrium with at least

one functional SNP. A similar increase can be observed for func-

tional SNPs supported by multiple sources of evidence. We re-

peated the same analysis for the 2464 lead SNPs that have been

associated with a phenotype in a population of European descent,

using SNPs in strong linkage disequilibrium (r2 $ 0.8) with the lead

SNP in the European HapMap population only. A total of 81% of

the lead SNPs are in strong LD with at least one functional SNP, and

59% of the associated SNPs are in strong linkage disequilibrium

with a functional SNP supported by multiple sources of evidence

(Fig. 2B). A detailed breakdown for each type of functional evi-

dence for multiple linkage disequilibrium thresholds is provided in

Supplemental Tables 2 and 3.

Integrating gene expression data

We integrated data from multiple eQTL studies that identified

SNPs associated with changes in gene expression in several tissues.

A total of 462 lead SNPs (9.8%) are also themselves an eQTL in at

least one tissue, and an additional 135 lead SNPs (2.8%) are in

strong LD (r2 $ 0.8 in all HapMap 2 populations) with an eQTL.

When considering only associations in populations of European

descent, 483 lead SNPs (19.6%) are either an eQTL, or in strong LD

with an eQTL. We observe that among lead SNPs that are also

eQTLs, the fraction that overlaps DNase I peaks (201, 43.5%) and

ChIP-seq peaks (118, 25.5%) is significantly higher than when

considering all lead SNPs (P-values of 7.6 3 10�4 and 1.7 3 10�3,

respectively).

SNP comparison within linkage disequilibrium regions

ENCODE data can be used in order to compare multiple functional

SNPs that are in LD with a given lead SNP. We used a two-step

approach to compare the functional annotation of two SNPs. First,

if one of the SNPs is in a coding region according to GENCODE v7

and the other one is not, the coding SNP is considered to be more

likely to be functional. Similarly, a SNP in a noncoding part of an

exon is considered to be more likely to be functional than a SNP

in an intergenic region or an intron. Second, if both SNPs are not

in exons, then we compared the amount of evidence across data

sources supporting the functional role of the SNP using a scoring

scheme integrated in RegulomeDB (see Supplemental Methods).

We hypothesized that a SNP supported by multiple types of evi-

dence (e.g., a ChIP-seq peak and a DNase I footprint) is more likely

to be functional than a SNP supported by a single experimental

modality. We find that most associations where the lead SNP is in

LD with at least one other SNP, the SNP with the most strongly

Figure 2. Proportions of associations for different types of functional data. Proportions are shown for individual assays (A) and for all sources of evidence
combined (B). Proportions are presented separately for lead SNPs and SNPs in strong linkage disequilibrium (r 2 $ 0.8) with a lead SNP. For each
association, we determine which SNP in the LD region is most strongly supported by functional data in order to generate the proportions in panel B. We
separately consider SNPs in strong linkage disequilibrium with a lead SNP in all HapMap 2 populations, and SNPs in strong linkage disequilibrium with
a lead SNP in the CEU population. For the latter case, we use only associations identified in populations of European descent, and show that we can map
80% of these associations to a functional SNP supported by experimental ENCODE data.
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supported functional SNP is not the lead SNP itself, but another SNP

in the LD region (22.4% compared with 13.6% when using LD in all

populations, 56.8% compared with 13.6% percent when consider-

ing CEU only) (Table 1). These results show that, in most cases, the

associated SNP reported in a GWAS is not the most likely to play

a biological role in the phenotype according to ENCODE data.

Associations are enriched for regulatory elements

We performed randomizations in order to compare the fraction

of lead SNPs that are functional SNPs or are in linkage disequi-

librium with a functional SNP, to the expected fraction among all

SNPs. We found that associated regions are significantly enriched

for functional SNPs identified using DNase-seq and ChIP-seq.

Furthermore, enrichments increased, both when integrating mul-

tiple ENCODE assays and when adding eQTL information. We

used a subset of 2364 lead SNPs for which sufficient information

is available and built 100 random matched SNP sets in which each

lead SNP is replaced by a similar SNP (for details, see Methods). We

compared the fraction of lead SNPs overlapping functional regions

in the set of actual lead SNPs with the fractions observed in the

random sets and computed enrichment values in order to show

that the fraction of associated SNPs that overlap functional regions

is higher than expected. Figure 3 provides an overview of the

enrichment for different types of functional data.

When considering lead SNPs only, we observed a 1.12-fold

enrichment for DNase peaks, a 1.22-fold enrichment for DNase

footprints, and a 1.25-fold enrichment for ChIP-seq peaks. All

enrichments are statistically significant (P-values of 1.3 3 10�4,

0.005, and 1.3 3 10�6, respectively). We also observed that com-

bining multiple types of evidence increases the enrichment: There

is a 1.36-fold enrichment for lead SNPs that overlap with a ChIP-

seq peak, a DNase peak, a DNase footprint, and a predicted motif.

Similarly, there is an 1.33-fold enrichment for eQTLs, and an even

higher enrichment for eQTLs that also overlap functional regions

(up to 2.4-fold).

In a similar way, limiting the set of lead SNPs to the most

strongly supported associations (replication in a different cohort in

the original study or in multiple studies) leads to an increase in

enrichment (Supplemental Fig. 1C). The enrichments can be com-

pared with the 1.05-fold enrichment (not significant, P-value 0.087)

observed when considering overlap with motif-based predictions,

which do not make use of ENCODE data. When extending the set of

possible functional SNPs to SNPs that are in linkage disequilibrium

with a lead SNP, we observed a decrease in the enrichment (Sup-

plemental Fig. 1A,B). At an r2 LD threshold of 0.8, enrichments for

most individual modalities are barely significant, but enrichment for

functional SNPs supported by multiple sources of evidence remains

significant (Supplemental Tables 3, 4).

Analysis at the phenotype level

In addition to considering individual associations separately, we can

group associated SNPs in order to search for patterns at the phe-

notype level. We first assessed whether there are specific sequence

binding proteins that tend to overlap

functional SNPs associated with certain

phenotypes more often than expected,

using only associations in populations of

European descent (Fig. 4). We found

a strong association (P-value = 9 3 10�5)

between height and CTCF ChIP-seq peaks.

A total of 39 SNPs associated with height

overlap a ChIP-seq peak or are in strong

linkage disequilibrium (r2 $ 0.8 in the

CEU population) with a SNP that overlaps

a ChIP-seq peak, and 15 of those (38%)

overlap a peak for CTCF (Supplemental

Table 5), compared with 89 out of

626 SNPs (14%) when considering all

phenotypes. We also found an interest-

ing interaction between prostate cancer

and the androgen receptor (AR), a tran-

scription factor that was not assessed by

ENCODE but as a control in a separate

study (Wei et al. 2010). Of the nine

functional SNPs for prostate cancer that

overlap a ChIP-seq peak, five overlap an AR

ChIP-seq peak (Supplemental Table 5). A

similar analysis using DNase I assays shows

that some cell line– and tissue-specific

Table 1. Comparison of functional evidence between the lead SNP and the best SNP in the
linkage disequilibrium region

All populations CEU only

Only lead SNP coding 199 4.21% 87 3.53%
Only lead SNP transcribed, noncoding 113 2.39% 39 1.58%
Lead SNP supported by more regulatory evidence 329 6.96% 208 8.44%
Lead better 641 13.56% 334 13.56%

Lead SNP and SNP in LD coding 24 0.51% 48 1.95%
Lead SNP and SNP in LD transcribed, noncoding 21 0.44% 30 1.22%
Lead SNP and SNP in LD have similar regulatory evidence 282 5.97% 193 7.83%
Lead and SNP in LD equal 327 6.92% 271 11.00%

Lead SNP transcribed, noncoding, SNP in LD coding 12 0.25% 17 0.69%
Lead SNP not transcribed, SNP in LD coding 110 2.33% 244 9.90%
Lead SNP not transcribed, SNP in LD transcribed, noncoding 98 2.07% 207 8.40%
SNP in LD supported by more regulatory evidence 356 7.53% 456 18.51%
SNP in LD annotated, lead SNP not annotated 483 10.22% 476 19.32%
SNP in LD better 1059 22.40% 1400 56.82%

No annotation 1147 24.26% 208 8.44%
Lead SNP annotated, no SNP in LD 1553 32.85% 251 10.19%

When considering a linkage disequilibrium threshold in the CEU population alone, only associations
that were identified or replicated in populations of European descent are used.
Boldfaced text indicates the summary of each section.

Figure 3. Overview of enrichment for different combinations of assays.
Enrichments are reported for all lead SNPs associated with a phenotype
and separately for lead SNPs that are also eQTLs or in strong linkage
disequilibrium with an eQTL. The enrichment for predicted motifs alone
(italics) is not significant. These results show that combining multiple
types of experimental evidence increases the observed enrichment.

Regulatory information for disease associations
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binding patterns can be observed for certain phenotypes, however,

without reaching statistical significance (Supplemental Fig. 2).

Specific examples

We identified functional SNPs in strong linkage disequilibrium for

a large fraction of all reported associations. A table mapping each

association to a list of candidate functional SNPs is available on our

website (http://RegulomeDB.org/GWAS) and as online Supple-

mental Materials. Table 2 highlights the lead SNPs supported by

the strongest functional evidence. These overlap a ChIP-seq peak,

a DNase peak, a DNase footprint, and a predicted motif, and the

transcription factor binding detected using ChIP-seq matches the

conserved motif used in DNase footprinting. Table 3 provides

a similar list for functional SNPs supported by the same amount of

regulatory evidence, but that are in strong LD with a lead SNP. The

lead SNP itself is supported by less or no evidence of a functional

role. Functional SNPs in strong LD with the lead SNP are located as

far as 170 kb from the reported association. Each of the functional

SNPs we identify is a biological hypothesis supported by experi-

mental regulatory data, but that still requires further validation. In

this section, we describe several functional SNPs in more detail

and show how ENCODE data can be used to generate interesting

biological hypotheses.

First, we show that we can re-identify a previously validated

functional SNP. Lead SNP rs1541160 is associated with amyo-

trophic lateral sclerosis (ALS) in a GWAS, and there is no evidence

that this SNP overlaps a functional region. However, it is in perfect

LD with rs522444, a functional SNP overlapping DNase hypersen-

sitivity regions and ChIP-seq peaks in a large number of ENCODE

Figure 4. Phenotype level overview of the overlap between associations and ChIP-seq binding. This matrix view shows phenotypes vertically and DNA
binding proteins assessed using ChIP-seq horizontally. Each cell represents the number of lead SNPs for the respective phenotype that overlap with
a ChIP-seq peak for the respective DNA binding protein or are in strong LD (r 2 $ 0.8 in the CEU HapMap 2 population) with a SNP that overlaps such
a peak. Only phenotypes with at least 20 lead SNPs and DNA binding proteins overlapping at least 20 functional SNPs are shown, but totals are computed
over the entire data set. The significant interaction between height-associated functional SNPs and CTCF, as well as the association between prostate
cancer–associated functional SNPs and androgen receptor (AR), are represented in bold font.

Table 2. Overview of the lead SNPs that are most strongly supported by functional evidence

Lead SNP Lead SNP score Phenotype PubMed ID Rep P-value

chr1 rs1967017 2a Serum urate 20884846 Yes 4 3 10�8

chr5 rs2188962 2a Crohn’s disease 20570966 Yes 1 3 10�7

Crohn’s disease 18587394 Yes 2 3 10�18

chr6 rs9491696 2a Waist–hip ratio 20935629 Yes 2 3 10�32

chr6 rs9483788 2a Hematocrit 19862010 Yes 3 3 10�15

Other erythrocyte phenotypes 19862010 Yes 1 3 10�47

chr11 rs2074238 2a QT interval 19305408 Yes 3 3 10�17

chr11 rs7940646 2a Platelet aggregation 20526338 Yes 1 3 10�6

chr12 rs902774 2a Prostate cancer 21743057 Yes 5 3 10�9

chr14 rs1256531 2a Conduct disorder (symptom count) 20585324 4 3 10�6

chr15 rs17293632 2a Crohn’s disease 21102463 Yes 3 3 10�19

chr16 rs4788084 2a eQTL Type 1 diabetes 19430480 Yes 3 3 10�13

chr17 rs9303029 2a Protein quantitative trait loci 18464913 4 3 10�7

chr19 rs10411210 2a Colorectal cancer 19011631 Yes 5 3 10�9

chr19 rs3764650 2a Alzheimer’s disease 21460840 Yes 5 3 10�17

Each of these lead SNPs overlaps a ChIP-seq peak, matched DNase footprint, matched motif, and a DNase I-seq peak.

Schaub et al.
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cell lines. The investigators in the original study identified

rs522444 due to its position in a putative SP1 binding site and

experimentally validated its functional role (Landers et al. 2009)

in altering the expression of the gene KIFAP3.

One novel functional SNP that we identify is rs7163757

(Fig. 5). This SNP is in strong LD with rs7172432, a SNP recently

shown to be associated with type 2 diabetes in the Japanese

population and replicated in a European population (Yamauchi

et al. 2010), and associated with insulin response in the Danish

population (Grarup et al. 2011). This functional SNP is supported

by evidence from both DNase I hypersensitivity and ChIP-seq

assays. DNase footprinting indicates that the functional SNP

overlaps a potential NFAT binding site. Interestingly, the risk

allele at rs7172432 is the common allele in the population

(53%), and there is a single haplotype with frequency above 1%

that includes the risk allele between the associated SNP and the

functional SNP, but several alleles with high frequency that in-

clude the protective allele.

A second novel functional SNP is in the 9p21 region, a gene

desert that contains multiple SNPs that are strongly associated

with several common diseases. Lead SNP rs1333049 has been as-

sociated with coronary artery disease in multiple studies in pop-

ulations of European (Samani et al. 2007; The Wellcome Trust Case

Control Consortium 2007; Broadbent et al. 2008; Wild et al. 2011)

as well as Japanese and Korean descent (Hinohara et al. 2008; Hiura

et al. 2008). In the HapMap 2 CEU population, this SNP is part of

a haplotype block that includes rs10757278 and rs1333047, both

of which are in perfect LD with rs1333049. There is no evidence in

ENCODE supporting a functional role for rs1333049. However,

both rs10757278 and rs1333047 overlap a DNase hypersensitivity

peak as well as ChIP-seq peaks for STAT1 and STAT3 in HeLA-S3

cells. Furthermore, rs10757278 lies in a STAT1 binding site, and

rs1333047 lies in a binding site and a DNase I footprint for In-

terferon-stimulated gene factor 3 (ISGF3). Figure 6 provides an over-

view of this region. Although the functional role of rs10757278 has

been previously reported (Harismendy et al. 2011), evidence of the

functional role of rs1333047 is novel. Interestingly, while only 27

bp separates the two SNPs, they are in perfect linkage disequilib-

rium in the CEU population only. The frequency of the A allele

at rs1333047 in the Yoruba in Ibadan, Nigeria (YRI) HapMap 2

Figure 5. Functional SNP rs7163757. Multiple sources of evidence indicate that SNP rs7163757 is functional. (A) Overview of the region between
genes C2CD4A and C2CD4B. (Blue vertical line) Functional SNP rs7163757; (green vertical line) lead SNP rs7172432. Multiple ChIP-seq and DNase-seq
peaks can be seen, including one that overlaps rs71763757. (B) Vicinity of functional SNP rs7163757. ChIP-seq binding is observed for multiple tran-
scription factors in multiple cell lines. Due to space, DNase peaks are represented only for a subset of the peaks overlapping the region. (C ) Sequence
around rs7163757 and motif for the NFAT binding site that overlaps the functional SNP. The minor allele is T. (D) Linkage disequilibrium region between
the functional SNP and the lead SNP in the HapMap 2 CEU population. The two SNPs are in perfect LD (r 2 = 1.0). (E) Haplotypes between the functional
SNP and the lead SNP. There is a single haplotype with frequency above 1% that carries the identified risk allele (A at rs7172432), whereas there are
multiple haplotypes that include the protective allele. Haplotypes with frequency of <1% are not shown.
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population is only 0.8%, compared with 50.8% in the CEU pop-

ulation. This allele is part of the protective haplotype found in

GWAS performed in populations of European descent. The A allele

is part of the motif for ISGF3 binding, whereas the T allele is not.

Discussion
In this study, we used data generated by the ENCODE Consortium

to identify regulatory and transcribed functional SNPs that are

associated with a phenotype, either directly in a genome-wide

association study or indirectly through linkage disequilibrium

with a GWAS association. We further added eQTL information,

thus identifying SNPs that are associated with a phenotype, for

which there is evidence that they affect a regulatory region or

a transcribed region, and for which a downstream target affected

by the SNP is known. This approach therefore has the potential to

provide putative mechanistic explanations for GWAS associations.

We showed that this method is successful in identifying a func-

tional SNP for a majority of previously reported GWAS associations

(up to 81% when considering association studies performed in

populations of European descent, and using the CEU population

to obtain linkage disequilibrium information).

The fraction of associated SNPs for which we can provide

a functional annotation is similar to the one reported in the ENCODE

integrative analysis paper (The ENCODE Project Consortium 2012).

The integrative analysis uses both DNase-seq and formaldehyde-

assisted isolation of regulatory elements (FAIRE) (Giresi et al. 2007)

data to identify regions of open chromatin, and thus finds a slightly

larger fraction of the associated SNP to overlap or be in LD with open

chromatin regions compared with our approach, which does not use

FAIRE data. We found that GWAS associations are significantly

enriched for DNase hypersensitivity peaks, DNase I footprints, and

ChIP-seq peaks even when accounting for most features of associated

SNPs. Our results are consistent with chromatin state-based methods

(Ernst et al. 2011), in which a segmentation approach was used in

order to identify enrichment for disease associations in predicted

enhancers. Segmentation-based approaches use machine learning

methods to predict chromatin state at every position in the genome

based mostly on histone information. These predictions are then

compared with GWAS results, thus showing enrichment for pre-

dicted states. A major difference of our work is that we directly used

ChIP-seq and DNase I-seq functional data in our analysis, and show

enrichment for observed ChIP-seq peaks or DNase I–hypersensitive

regions. In this study, we demonstrated that there is significant

Figure 6. Functional information and linkage disequilibrium patterns support the implication of rs1333047 in coronary artery disease. Functional data
(ChIP-seq) generated by the ENCODE Consortium show evidence of STAT1 binding in the 9p21 region associated with coronary artery disease.
rs10757278 and rs1333047 are both located in the peak, whereas rs1333049 is a tag SNP that does not overlap any functional region in RegulomeDB.
rs10757278 is part of a regulatory motif for STAT1 binding, and rs1333049 is part of a regulatory motif for ISGF3 binding. (*) The location at which a gap is
inserted into the motif to handle variable linker length. Haplotype frequency and linkage disequilibrium data from the different HapMap2 populations
show that all three SNPs are in perfect linkage disequilibrium in the CEU population, but not the CHB and JPT populations. In the YRI population, the
frequency of the A allele at rs1333047 is only 0.8%. Risk alleles for all SNPs are determined using the haplotype associated with coronary artery disease in
the CEU population (red). There is an absence of linkage disequilibrium between rs1333047 and rs1333049 in YRI, and the association between
rs1333049 and rs10757278 and coronary artery disease has not been replicated in populations of African descent.
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enrichment of GWAS associations for these types of data. Further-

more, we found that (1) integrating multiple types of functional

data and expression information identifies more likely candidate

causal SNPs within an LD region, and (2) phenotypic information

from GWAS studies can be associated with biochemical data.

Existing methods for prioritizing SNPs based on their func-

tional role focused on transcribed regions (Ng and Henikoff 2003;

Adzhubei et al. 2010; Saccone et al. 2010), whereas we focused

on regulatory regions. In the context of regulatory regions, most

approaches are based on motif information (Xu and Taylor 2009;

Macintyre et al. 2010), and approaches using experimental data

have generally been limited to individual associations (Harismendy

et al. 2011). The comprehensive data sets generated by the ENCODE

Consortium are the first to offer sufficient information to allow for

genome-wide methods that rely on experimental information. We

used enrichment to compare the sensitivity of our approach with

motif-based methods. We found that there is no significant en-

richment for GWAS associations among conserved motifs.

Identifying functional SNPs in linkage disequilibrium
with lead SNPs

We found that, in most cases, there is more evidence supporting

another SNP in strong LD with the lead SNP than the lead SNP

itself. This is consistent with results from fine-mapping analyses

that indicate that multiple variants in the linkage disequilibrium

region surrounding a lead SNP appear to play a role in the phe-

notype of interest (Chung et al. 2011; Sanna et al. 2011). This result

is of particular importance for the interpretation of GWAS results,

because LD patterns differ markedly between populations. If the

functional SNP is in strong LD with the lead SNP in the population

in which the GWAS was performed, but not in a different pop-

ulation, then the lead SNP will not be associated with the pheno-

type in this second population. An example of this situation is

functional SNP rs1333047, which lies in a region associated with

coronary artery disease. This SNP is in perfect LD with two lead

SNPs in populations of European descent in which the studies

identifying the associations were performed, but not in pop-

ulations of African descent, in which the associations could not be

replicated (Assimes et al. 2008; Kral et al. 2011; Lettre et al. 2011;

see Supplemental Material).

Comparison of functional assays

We integrated data from multiple types of functional assays in

order to identify functional SNPs.

We found that the highest enrichments are obtained when

requiring functional SNPs to be supported by multiple sources of

experimental evidence rather than only one. The highest enrich-

ments are observed when using both eQTL information and

ENCODE data, and when considering associations that have been

replicated. A similar trend can be observed when examining

individual assays. The more specific the assay, the higher is the

enrichment for overlap among GWAS associations: The DNase

hypersensitivity peaks, which broadly capture regions in which

chromatin is accessible, do overlap with a large fraction of SNPs in

general, thus leading to relatively weak enrichments, whereas the

enrichment is much higher for ChIP-seq peaks, which experi-

mentally identify the binding of specific transcription factors and

other molecules. There is a clear trade-off between the more sig-

nificant enrichment we observe, and the lower fraction of associ-

ations annotated with ChIP-seq peaks. The ChIP-seq data generated

so far by the ENCODE Consortium only assesses 119 transcription

factors, a fraction of the 1800 known ones (The ENCODE Project

Consortium 2012). Most transcription factors are assessed in a small

subset of the ENCODE cell lines, whereas DNase-seq has been per-

formed on most ENCODE cell lines. DNase footprinting, which

combines DNase-seq data with sequence and motif information, is

useful to identify potential binding sites for transcription factors not

assessed using ChIP-seq. An example of this situation is functional

SNP rs7163757, which is in LD with a lead SNP associated with type

2 diabetes. DNase I footprinting identifies a nuclear factor of activated

T-cells (NFAT) footprint that overlaps rs7163757. NFAT is part of the

calcineurin/NFAT pathway (Crabtree and Olson 2002), which has

been involved in the regulation of growth and function of the

insulin-producing pancreatic beta cells, and linked to the expression

of genes known to be associated with type 2 diabetes (Heit et al.

2006).

Differences between tissue types

Transcription factor binding patterns are heterogeneous and differ

between tissue types. Assessing this heterogeneity has been a main

motivation for the ENCODE Project. One concern is that the cell

lines from which the functional information is derived do not

necessarily correspond to the tissue type that is most relevant to

the phenotype of interest. A similar approach has been successfully

used to identify functional SNPs that play a role in coronary artery

disease based on a ChIP-seq assay performed in the immortalized

HeLa cell line (Harismendy et al. 2011). By choosing to use func-

tional data across all tissues, we purposefully favor sensitivity over

specificity. An example illustrating the benefits of this trade-off is

rs2074238, a functional SNP associated with long QT syndrome. A

ChIP-seq experiment identifies the binding of estrogen receptor

alpha at this location in an epithelial cell line. Long QT syndrome

is more prevalent in women (Hashiba 1978; Locati et al. 1998), the

menstrual cycle affects the QT interval (Nakagawa et al. 2006), and

estrogen therapy has been shown to affect the duration of the QT

interval in postmenopausal women (Kadish et al. 2004; Gökcxe et al.

2005). ChIP-seq data for this transcription factor are only available

for two cell lines, neither of cardiac origin. By limiting our ap-

proach to functional data obtained in cardiac tissues, we would

have excluded a transcription factor whose role in the phenotype

is supported by extensive prior evidence. When examining all as-

sociations, the significant enrichments we report demonstrate that

our current approach improves specificity compared with using

motif information only.

Although the ChIP-seq data generated so far by the ENCODE

Consortium are sparse, especially in terms of the number of

different tissues in which a transcription factor is assessed, the

number of available data sets is growing rapidly. We expect that it

will soon become possible to refine this approach by considering

the most relevant tissue types only, thus further improving its

specificity. A remaining challenge is the identification of specific

tissue types that are relevant for a given phenotype. A specific

example is a functional SNP we identify in the context of

Alzheimer’s disease: In cell lines of hepatic origin, rs3764650

overlaps a binding site for HNF4A, a transcription factor known

mainly to play a role in the liver. Although Alzheimer’s is a

neurodegenerative disease, a recently published study shows that

the liver might play an important role in the disease mechanism as

well (Sutcliffe et al. 2011). This example shows the benefits

of looking broadly at all available experimental data from

ENCODE.
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Functional SNPs beyond reported associations

In this study, we focused on using ENCODE information in order

to identify functional SNPs in strong LD with previously reported

associations. It is, however, important to note that these SNPs only

represent a small fraction of all the SNPs that overlap functional

regions identified by ENCODE. SNPs that alter transcription factor

binding sites are likely to have some biologically important effect

and have an impact on some phenotype. Such a SNP, however, will

only be found in a GWAS if the specific phenotype it affects is

assessed. Given this fundamental limitation of association studies,

an orthogonal approach would be to study the functional effects of

common SNPs regardless of their association with a phenotype.

Furthermore, this effect explains why the enrichments we observe,

while significant, are relatively modest. We used a stringent null

model in which a lead SNP is matched to a random SNP that is

similar to the lead SNP, and in particular located at a similar dis-

tance to the nearest transcription start site. Associated SNPs are

located more closely to genes than SNPs in general, and therefore

null sets are also biased toward SNPs that are likely to have some

biological effect. Relaxing the null model leads to higher enrich-

ments (Supplemental Fig. 1B,C).

Conclusion

We show that genome-wide experimental data sets generated by

the ENCODE Consortium can be successfully used to provide pu-

tative functional annotations for the majority of the GWAS asso-

ciations reported in the literature. The use of these experimental

assays outperforms the use of in silico binding predictions based

on sequence motifs when trying to identify functional SNPs as-

sociated with a phenotype in a GWAS. We demonstrate that an

integrative approach combining genome-wide association studies,

gene expression analysis, and experimental evidence of regulatory

activity leads to the identification of loci that are involved in

common diseases, and generates hypotheses about the biological

mechanism underlying the association. In the majority of cases,

the SNP most likely to play a functional role according to ENCODE

evidence is not the reported association, but a different SNP in strong

linkage disequilibrium with the reported association. Our approach,

which builds directly on the publicly available RegulomeDB data-

base, provides a simple framework that can be applied to the func-

tional analysis of any genome-wide association study.

Methods

Data
We use the NHGRI GWAS catalog (Hindorff et al. 2009) (http://
www.genome.gov/gwastudies downloaded on August 10, 2011)
to obtain a list of GWAS associations. We use HapMap version 2
(The International HapMap Consortium 2007) and version 3 (The
International HapMap Consortium 2010) in order to obtain
linkage disequilibrium information between SNPs. HapMap data
can be downloaded from http://hapmap.ncbi.nlm.nih.gov/. We
use the list of SNPs that appear on genotyping arrays from the SNP
Genotyping Array track of the UCSC Genome Browser (Kent et al.
2002). We use the function information generated by the UCSC
Genome Browser for each SNP in dbSNP 132 (Sayers et al. 2012).
We used the November 7, 2011 version of RegulomeDB (Boyle
et al. 2012) in order to annotate SNPs with regulatory information
and to obtain a list of eQTL. The RegulomeDB server is available at
http://www.regulomedb.org, and all ENCODE data sets used in
RegulomeDB can be accessed via the ENCODE portal at

http://encodeproject.org. We use GENCODE v7 (Harrow et al.
2012) to identify SNPs that overlap transcribed regions. The
GENCODE v7 track can be accessed on the UCSC Genome
Browser at http://genome.ucsc.edu. These data sets are de-
scribed in more detail in the Supplemental Material.

Annotation

Lead SNPs

We call the associated SNP reported in a GWAS the lead SNP.
For each lead SNP, we retrieve the regulatory annotation from
RegulomeDB and the transcriptional annotation from GENCODE
v7. We determine the fraction of lead SNPs that are coding, in
noncoding parts of exons, that overlap DNase I peaks, DNase I
footprints, and ChIP-seq peaks independently of each other. This
means that if, for example, a SNP overlaps both a DNase peak and
a ChIP-seq peak, then it will be counted for both types of assays.
We consider that there is an overlap between the SNP and the type
of assay if there is one ENCODE cell line in which there is, re-
spectively, a DNase peak, a DNase footprint for at least one motif,
or a ChIP-seq peak for at least one binding protein that overlaps
the SNP. To determine a score for lead SNPs, we first assess whether
the SNP is in an exon. If the SNP is not in an exon, then we assign
the modified RegulomeDB score to this SNP (see the Supplemental
Material). We use Fisher’s exact test on a 2 3 2 table to compute a
P-value for the difference in the fraction of functionally annotated
SNPs between all lead SNPs and lead SNPs that are eQTLs.

Linkage disequilibrium

For each lead SNP, we compute the set of all SNPs in LD with that
lead SNP. We first use an r2 threshold in order to limit the LD set to
SNPs in strong LD with the lead SNP. To add a SNP to the LD set, we
require that the r2 is above the threshold in all four HapMap 2
populations. We then look separately at associations found in
populations of European descent. For each of these lead SNPs, we
obtain a set of SNPs in LD with the lead SNP when considering the
HapMap 2 CEU population only. We separately analyze the set of
all lead SNPs, and the subset of European-descent lead SNPs.

To compute the fraction of SNPs in LD with a lead SNP that
overlap a type of functional data, we do count every lead SNP at
most once, namely, when one or more SNPs in the LD set overlap
with the functional data type. To compute a score, we find the best
candidate in the LD set corresponding to each lead SNP. We con-
sider that a coding SNP had more functional evidence than a SNP
in a noncoding part of an exon, and that a SNP in an exon has more
functional evidence than a regulatory SNP. If no SNP in the LD set
is transcribed, then we find the SNP with the best RegulomeDB
score. We consider an associated region to be an eQTL if there is at
least one eQTL in the set of SNPs in LD with the lead SNP.

Randomization

We create n = 100 null sets in which each lead SNP is matched to
a random SNP that has a similar minor allele frequency, is present
on the same genotyping platform as the lead SNP, has the same
predicted function (using UCSC gene predictions), and is located at
a similar distance from the nearest transcription start site. To per-
form these randomizations, we filter out lead SNPs for which in-
sufficient information is available, lead SNPs that are not assessed
in one or more HapMap populations, and lead SNPs that are in
linkage disequilibrium with another lead SNP that is more strongly
associated with a phenotype. The filtering and randomization
steps are described in more detail in the Supplemental Material.
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We then repeat the annotation steps on each null set and
obtain an empirical distribution of the fraction of functional SNPs
expected for matched SNPs, and of the score distribution among
matched SNPs. We obtain a P-value for the difference between the
lead SNPs and the null sets using a Student’s t distribution with
n � 1 degrees of freedom and the same mean and standard de-
viation from the empirical distribution of the counts overlapping
the feature in the n randomized null sets. This distribution is used
to estimate the probability of having a null set (which is by con-
struction of the same size as the set of lead SNPs) with a fraction of
SNPs overlapping the feature that is as extreme or more extreme
than the fraction observed for the lead SNP set, which results in
a two-tailed P-value.

Analysis at the phenotype level

We group all lead SNPs per phenotype using the GWAS catalog
phenotype classification. We do not further group phenotypes,
even though some are similar. We use only associations identified
or replicated in populations of European descent. For each lead
SNP, we count how many times the lead SNP or at least one SNP in
strong LD (r2 $ 0.8 in the HapMap 2 CEU population) overlaps
with a ChIP-seq peak for a given DNA binding protein. Each lead
SNP is counted at most once for each DNA binding protein, and we
ensure that no two lead SNPs are in LD with each other. We then
add the totals for all of the lead SNPs associated with each phe-
notype. We use a Fisher’s exact test on a 2 3 2 table to show that the
fraction of lead SNPs associated with heights that are in strong LD
with at least one SNP overlapping with a CTCF ChIP-seq peak is
higher than the same fraction for all associated lead SNPs.

Analysis of individual loci

We use Haploview (Barrett et al. 2005) to analyze linkage disequi-
librium data and haplotype frequencies in individual regions. We
obtain transcription factor binding motifs from TRANSFAC
(STAT1, NFAT) and JASPAR (ISGF3). The motif representations in
Figures 5 and 6 were created using WebLogo 3 (Crooks et al. 2004).

Data access
The list of all functional SNP predictions we generate is available
at http://RegulomeDB.org/GWAS and as online Supplemental
Material.
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