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Transcription is tightly regulated by cis-regulatory DNA elements where transcription factors (TFs) can bind. Thus, iden-

tification of TF binding sites (TFBSs) is key to understanding gene expression and whole regulatory networks within a cell.

The standard approaches used for TFBS prediction, such as position weight matrices (PWMs) and chromatin immunopre-

cipitation followed by sequencing (ChIP-seq), are widely used but have their drawbacks, including high false-positive rates

and limited antibody availability, respectively. Several computational footprinting algorithms have been developed to

detect TFBSs by investigating chromatin accessibility patterns; however, these also have limitations. We have developed a

footprintingmethod to predict TF footprints in active chromatin elements (TRACE) to improve the prediction of TFBS foot-

prints. TRACE incorporates DNase-seq data and PWMs within a multivariate hidden Markov model (HMM) to detect foot-

print-like regions with matching motifs. TRACE is an unsupervised method that accurately annotates binding sites for

specific TFs automatically with no requirement for pregenerated candidate binding sites or ChIP-seq training data.

Compared with published footprinting algorithms, TRACE has the best overall performance with the distinct advantage

of targeting multiple motifs in a single model.

[Supplemental material is available for this article.]

Identification of cis-regulatory elements where transcription fac-
tors (TFs) bind remains a key goal in deciphering transcriptional
regulatory circuits. Standard approaches to identify sets of active
TF binding sites (TFBSs) include the use of position weight matri-
ces (PWMs) (Stormo et al. 1982) and ChIP-seq (Barski et al.
2007). Although these methods have been successful, both suffer
from drawbacks that limit their usefulness. PWMs are able to
identify high-resolution binding sites but are prone to extremely
high false-positive rates (FPRs) in the genome. On the other
hand, although ChIP-seq binding measurements are highly spe-
cific and have a significantly reduced FPR, the resolution is com-
paratively low, is labor intensive, and depends on suitable
antibodies that are only available for a limited number of TFs.
Newer experimental techniques for the identification of DNA-
bound protein binding sites, such as ChIP-exo (Rhee and Pugh
2012) and CUT&RUN (Skene and Henikoff 2017), have the ad-
vantage of high resolution and cost efficiency but still share
the same labor intensive and limited antibody availability disad-
vantages as ChIP-seq.

To complement these approaches, another experimental
method has been developed using data from high-throughput se-
quencing after DNase I digestion (DNase-seq) (Boyle et al. 2008).
DNase-seq identifies stretches of open regions of chromatin where
DNase I cuts at a higher frequency. Within these regions, TFBSs
can be identified at nucleotide resolution by searching for foot-
print-like regions with low numbers of DNase I cuts embedded
in high-cut peaks.

Hesselberth et al. (2009) first proposed a DNase-seq signal–
based computational method to detect footprints at base-pair res-
olution in Saccharomyces cerevisiae. Since then, several computa-

tional footprinting algorithms have been developed to detect
TFBSs by investigating chromatin accessibility patterns, which
can be categorized as de novo (the Boyle method, DNase2TF,
HINT, PIQ, and Wellington) and motif-centric (DeFCoM,
BinDNase, CENTIPEDE, FLR) (Boyle et al. 2011; Pique-Regi et al.
2011; Piper et al. 2013; Sherwood et al. 2014; Sung et al. 2014;
Yardımcı et al. 2014; Kähärä and Lähdesmäki 2015; Gusmao
et al. 2016; Quach and Furey 2017). De novo methods detect foot-
prints across input regions based on their DNase digestion pattern.
However, most of these methods were not designed to distinguish
between binding sites for specific TFs and cannot automatically la-
bel TF-specific binding sites of interest. In contrast, motif-centric
methods can predict TF-specific sites but require pregenerated can-
didate binding sites for TFs and assess their probability of being TF
bound (active binding sites). This limits their performance as these
methods are unable to detect additional regions of candidate bind-
ing sites. Moreover, some of these methods are supervised, requir-
ing ChIP-seq data to generate positive and negative training sets,
and can only be applied to TFs with high-quality antibodies.
This is a constraint as only a minority of TFs have ChIP-seq data
available (Wang et al. 2012).

In addition to DNase digestion patterns, more detailed mod-
eling of sequence preference information has been used in TFBS
identification. Hoffman and Birney (2010) have previously pro-
posed a hidden Markov model (HMM)–based method, termed
Sunflower, to predict TFBSs based solely on sequence data.
Instead of scanning for motif sequences directly, this model takes
into consideration the competition between multiple TFs to pro-
vide a binding profile for all factors included in the model.

Corresponding author: apboyle@umich.edu
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.258228.119.

© 2020 Ouyang and Boyle This article is distributed exclusively by Cold Spring
Harbor Laboratory Press for the first six months after the full-issue publication
date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it
is available under a Creative Commons License (Attribution-NonCommercial
4.0 International), as described at http://creativecommons.org/licenses/by-
nc/4.0/.

Method

1040 Genome Research 30:1040–1046 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/20; www.genome.org
www.genome.org

 Cold Spring Harbor Laboratory Press on October 30, 2020 - Published by genome.cshlp.orgDownloaded from 

mailto:apboyle@umich.edu
http://www.genome.org/cgi/doi/10.1101/gr.258228.119
http://www.genome.org/cgi/doi/10.1101/gr.258228.119
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/
http://www.cshlpress.com


Although Sunflower still suffers from sequence-only method lim-
itations for identifying TFBSs, it has a greater ability to distinguish
the specific TF that binds at each predicted site.

We have developed an unsupervised footprinting method,
TRACE, based on a HMM framework (Rabiner 1989; Durbin et al.
1998) and inspired by the success of Sunflower and other existing
footprinting methods. TRACE predicts footprints and label bind-
ing sites for a set of desired TFs by integrating both DNase-seq
data and PWMs. Our method is not dependent on pregenerated
candidate binding sites or available ChIP-seq data, making it
more flexible and broadly applicable compared to previous
methods.

Results

The TRACE model

TRACE is an HMM-based unsupervised method with the number
of hidden states dependent on the numbers and lengths of includ-
ed PWMs (Fig. 1). The basic structure of our model includes two
background states (the start and end of each open chromatin re-
gion delineated by DNase I cut sites), a target TF state (Fig. 1C,
CTCF), a generic footprint state (Fig. 1C, fp), and a series of bait
motif states (Fig. 1C, motif_1-motif_6). Each of the nonback-
ground states is surrounded by a set of UP, TOP, and DOWN states
(upslope, summit, and downslope of small peaks surrounding each
footprint). Target TF states and bait motif states contain a number
of discrete chains of states representing binding sites for eachmotif
included in the model. The generic footprint state represents the
regions that have a footprint-like digestion pattern but do not
match any PWMs in themodel. TRACE includes a series of baitmo-
tifs representing commonly co-occurring motifs that significantly
increase the performance of the model. For example, the seven-
motif CTCF model in Figure 1C includes a CTCF binding site state
chain, six additional bait motifs (motif_1, motif_2, …, motif_6),
and generic footprints whose sequences do not match any of the
included motifs. For each of these motifs, our model can distin-
guish its TF-bound states from unbound states based on the

distinct DNase-seq digestion patterns of the motif sites
(Supplemental Fig. S1).

TRACE takes PWMs and DNase-seq signals as inputs and
models the emissiondistribution as amultivariate normal distribu-
tion using cut count signal and its derivative, as well as PWM
scores at each genomic position. Each binding site (footprint) is ex-
pected to be in a region of low sequence density surrounded by a
peak of density to either side with a high PWM score (Fig. 1A,B).

TRACE outperforms existing methods

To evaluate the performance of TRACE relative to published com-
putational footprinting methods, we tested nine methods
(DeFCoM, BinDNase, CENTIPEDE, FLR, DNase2TF, HINT, PIQ,
Wellington, and a PWM-only comparison) on 99 TFs. For a fair
comparison across all methods, de novo methods were applied
to DNase-seq peaks containing the same sets of motif sites that
were assessed by motif-centric methods. Receiver operating char-
acteristic curve area under the curve (ROC AUC) and precision-re-
call (PR) AUC of predictions of each TF were computed for each
method based on the P-values or scores provided and were ranked
across all methods (Fig. 2A; Supplemental Figs. S2, S3).

Previous studies evaluating computational footprinting
methods focus on ROC AUC as a measurement of performance.
Although this is a decent classification performance assessment,
the number can be inflated by false positive predictions. For exam-
ple, the ROC AUC statistic might imply a relatively favorable clas-
sification if the method tends to call most samples as positive hits
when the data are highly unbalanced, as is the case formanyof TFs
tested. In addition, partial ROC AUC (ROC pAUC) were computed
at a 5% FPR cutoff. PR AUCwas also included in the evaluations as
it provides a better assessment of false positives. Compared with
other footprinting methods, TRACE has the best overall perfor-
mance based on average rank in both ROC pAUC and PR AUC
across the 99 tested TFs (Fig. 2C,D). It ranked first overall for
25.5% of TFs and in the top five for 96.9% of TFs. Compared
with other unsupervised methods, TRACE ranked first for 87.7%
of TFs. TRACE also outperformed supervised approaches,

B
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Figure 1. Computational footprinting can detect TFBSs at nucleotide resolution. (A) An example of digestion pattern at footprints: DNase I base overlap
signal centered at CTCFmotif sites (black box). (B) Predicted binding sites from TRACE using our 10-motif CTCFmodel match a corresponding region of TF
binding obtained by ChIP-seq experiments with DNA-binding motifs by the ENCODE Factorbook repository. (MAFK is a member of cluster 3 motifs.)
(C) Simplified example schematic of a seven-motif CTCF model. Circles represent different hidden states including multiple motifs; lines with arrows rep-
resent transitions between different states. For simplicity, TOP states are not shown in the model structure.
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including DeFCoM and BinDNase. TRACE can predict TF foot-
prints with a performance equal to or better than the best pub-
lished methods without the requirement of positive and
negative training data sets.

Bait motifs improve footprinting prediction accuracy

TRACEprovides identificationofbinding sites foranydesiredTFsat
nucleotide resolution. By incorporating DNase-seq data and PWM
information, it can detect footprints with an anticipated DNase
digestion pattern and matching motifs (Fig. 1B). One important
feature of our model is that states for different motifs are indepen-
dent of each other, enabling its ability to distinctly label binding
sites formultiple TFs. In addition, adding extramotifs to themodel
for a specific TF can potentially increase the accuracy of identifying
TF-specific binding sites. These additionalmotifs serve as baits, dis-
couraging the prediction ofweaklymatching sites and introducing
competition, thus decreasing FPRs (Hoffman and Birney 2010).
However, including PWMs with similar sequence preference does

not provide useful information and could decrease our model’s
ability to distinguish between binding sites of different motifs. To
avoid this, only root motifs from each motif cluster in the JASPAR
CORE vertebrates clustering were used (Khan et al. 2018), and the
cluster that contains the TF of interest was excluded
(Supplemental Methods). Each root motif encompasses all of the
position-specific scoring matrices (PSSMs) of a cluster generated
by the RSAT matrix-clustering tool (Castro-Mondragon et al.
2017). In a N-motif model, the root motifs from N − 1 clusters
with the greatest number of occurrences were selected. These
N − 1 motifs provide additional information, making the model
more sensitive to identifying binding sites for the TF of interest.

Overall, the addition of bait motifs to the model yielded sig-
nificant improvements over our original method, which had a
similar HMM structure but did not include motif information
(an option provided in TRACE) (Boyle et al. 2011). Using a 10-mo-
tif model (the TF of interest plus nine extra motifs), the average PR
AUC from TRACE increased by 0.20 (63.1%) over our original
method, and ROC pAUC improved by 20%.

BA

C D

Figure 2. TRACE’s performance is stable across cell lines, and it outperforms other computational methods. (A) Example ROC curves of E2F1 for all meth-
ods evaluated. (B) Cross–cell line comparison of binding site prediction in GM12878. Each point represents a TF tested; the x-axis and y-axis are PR AUCs of
applying TRACE usingmodels trained fromGM12878 andmodels trained from K562, respectively. Points above the diagonal line indicate TFs for which the
inter–cell line model performed better. (C,D) Average rank of PR AUC and ROC pAUC of existing methods across all TFs tested. The bars with a dashed
outline represent motif-centric methods.
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By comparing models containing different numbers of extra
motifs, we found that additional TFs can increase the quality of
TFBS identification inmost cases. However, this was at the expense
of considerably increased computational time (Supplemental
Table S3). We determined that an optimal trade-off between per-
formance increase and computational timewas the 10-motif mod-
el, which is used in the remainder of this study.

TRACE can be applied accurately across cell lines

Cross–cell line validation was performed using models trained
from K562 DNase-seq data and subsequently applied to
GM12878 to test their performance comparedwithmodels trained
on GM12878. Because there is less available validation data in
GM12878, this comparison used 52 TFs. The results indicated
that TRACE can provide accurate predictions in one cell line using
a model trained from another cell line and that intra–cell line and
inter–cell line predictions have comparable overall performance
(Fig. 2B). This suggests that the data processing steps can success-
fully capture the signature information of DNase digestion and
diminish between–data set variance to a degree sufficient for effec-
tive prediction across cell lines. It also indicates that the DNase
digestion pattern of binding sites is preserved for most TFs across
cell types. Some exceptions were observed, however; for example,
ESRRA had significantly better performance in the inter–cell line
test compared with the intra–cell line test. This TF has far fewer ac-
tive binding sites in GM12878 (7.6% prevalence) than K562
(31.3% prevalence), and TRACE may not be able to learn an accu-
rate model from the GM12878 data. This suggests that the model
should be trained using the highest quality and most representa-
tive of the true genome-wide binding data sets, and the trained
model can be applied across all cell types of interest.

TRACE’s cross–cell line application allows for fast and large-
scale TFBS prediction using existing models without repetitive
model training, which is the most time-consuming step. It also
shows TRACE’s advantage over the supervised methods’ limited
usage as only a very small fraction of TFs have ChIP-seq data avail-

able (Supplemental Fig. S4). To further showcase this flexibility, we
have generated models for 526 JASPAR motifs and made them
available through our GitHub site (see Software availability).

TRACE calls accurate footprints using ATAC-seq data

ATAC-seq provides chromatin accessibility information
(Buenrostro et al. 2013) and has been proposed to be useful in foot-
printing analyses. TRACE was tested using ATAC-seq and OMNI-
ATAC-seq data (Supplemental Methods) to evaluate the perfor-
mance of our model compared with other models designed to
work with this particular data type. The results were compared
with HINT-ATAC (Li et al. 2019) and DeFCoM, as their original
publications included ATAC-seq–based evaluation, and showed
similar improvement in performance as in the case of DNase data.

Overall, TRACEmaintains the best performance among these
three methods, as it ranked first for both PR AUC and ROC pAUC
(Fig. 3A; Supplemental Fig. S5). Prediction accuracy for TRACEwas
compared using DNase-seq and ATAC-seq data for each TF in
GM12878 (Fig. 3B; Supplemental Fig. S6). This analysis showed
that ATAC-seq data provide comparable TFBS identification poten-
tial as DNase-seq but that TRACE works slightly better at compar-
ing PR AUCs using DNase-seq data (60% of TFs). TFs that showed a
significantly lower PR AUC using DNase-seq were caused by train-
ing data imbalances from GM12878 DNase-seq peaks. For exam-
ple, training sets from ATAC-seq data for FOXK2, ZNF384,
CEBPB, and TBP all have at least a 100% increase of prevalence
compared withDNase-seq training sets. To determine that the per-
formance difference between these two data sets was not owing to
the deeper sequencing depth of DNase-seq, TRACE was performed
on a DNase-seq data set that had comparable and/or fewer reads
than ATAC-seq. This hadminimal effect on TRACE’s performance,
and similar results were obtained (Supplemental Fig. S12). We fur-
ther down-sampled our data sets and found that footprinting per-
formance would drop significantly if the number of reads was
below 50 million.

BA

Figure 3. TRACE can perform well on ATAC-seq data. (A) Average rank of PR AUC across all TFs tested using ATAC-seq data for TRACE, DeFCom, and
HINT-ATAC. (B) DNase-seq–based and ATAC-seq–based TRACE performance comparison on PR AUC.
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DNase footprinting has stable performance despite variable levels

of data imbalance

It has been noted that not all TFs have accurately predicted active
binding sites by computational footprinting, regardless of the al-
gorithm applied. Our evaluation of existing footprinting methods
indicates that all methods share similar performance trends across
all TFs (Fig. 4A, left panel; Supplemental Fig. S9). This pattern also
exists when assessing candidate binding sites by PWMscores alone
(Fig. 4A, right panel). The footprinting performance gain against
PWMs is only marginal for some TFs, and using PWM scores alone
can even outperform all footprinting methods for two TFs among
the 99 TFs tested here (Fig. 4B).

The poor performance from footprinting might be partially
owing to the imbalance of positive (P) and negative (N) examples
in data sets, as evaluation statistics of prediction for each TF were
shown to be associated with its prevalence (fraction of positive

samples, P/(P +N); see Methods) (Fig. 4A). Data imbalance affects
the quality of model training, and if the data distribution is too
skewed, training quality will likely be diminished. Some poor per-
forming models were associated with too few positive examples,
owing to their inability to distinguish active and inactive states
in model training. However, this only accounts for a small subset
and cannot explain the general trend of poor performance in
TFBS predictions. Comparing final models for each TF did not re-
veal significant correlation between prediction accuracies and sta-
tistics from different models.

To further explore how computational footprinting may be
limited by data imbalance, the best footprinting performance for
each TF was compared with a matched-imbalance permutation
test of labeled sites (Fig. 4C; Supplemental Figs. S7, S8, S10). To
complement this, simulations were performed with different lev-
els of classification skill and varying imbalance to estimate how
PR AUC and ROC AUC values reflect the classifier performance

BA

C

Figure 4. Computational footprintingmethods share similar performance patterns. (A) Heatmap of PR AUCof all TFs tested fromexistingmethods sorted
by prevalence. (B) Comparison between the best PR AUC among all footprinting methods (y-axis) and PR AUC from using PWM score alone (x-axis) for
every TF tested. (C ) Performance improvement of footprinting methods over permutation for each TF colored by its best PR AUC from footprinting.
Orange line is from a simulation test using positive instances drawn from N(10, 8), and negative instances from N(0, 7) to show expected PR AUC trend
as binding prevalence changes.
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(Supplemental Fig. S7). As imbalance changes within a classifica-
tion skill, we can expect that the PR AUC will change correspond-
ingly but that ROC AUC and ROC pAUC will stay the same (Saito
andRehmsmeier 2015). However, the ROCcurve oftenprovides an
overly optimistic assessment caused by true negatives used in FPR
calculation, especially when there is a large skew in the data distri-
bution (Davis and Goadrich 2006).

Instead of comparing AUCs across TFs directly, their perfor-
mance improvement over random labels (baseline) was measured.
To examine the general performance gain using computational
footprinting, max PR AUCs or ROC AUCs were collected from all
existingmethods, including TRACE, and thenAUCswere subtract-
ed from the corresponding permutation test. This number was
used as a measurement of footprinting performance advantage
over randomly predicted labels. The regression line of PR AUC in-
crease against baseline has a skewed bell-like shape, consistent
with the shape of simulated performance generated from a steady
model skill (Fig. 4C; Supplemental Figs. S7, S10). This suggests that
the performance of footprinting is roughly at a stable level and not
associated with data imbalance. A higher evaluation statistic does
not necessarily mean a better classification quality for that TF in
some cases. Although prevalence may affect evaluation statistic
values, no evidence was found that the true classification quality
is determined by this data imbalance. Instead, there tends to be a
stable level of footprinting classification performance increase
compared with random across all TFs.

Discussion

Incorporating DNase-seq data and PWM information enables
TRACE to detect footprints with the desired DNase digestion pat-
tern and matching motifs. By including multiple motifs in the
same model, our method provides a better overall TFBS prediction
than other existing computational footprinting methods. Because
different motifs are treated as separate states in our model, TRACE
also has the potential of targeting multiple TFs in a single model.
Our method annotates binding sites for the desired TFs across in-
put regions automatically, without requiring pregenerated candi-
date binding sites or additional motif matching steps. In
addition, as an unsupervised algorithm, its application is not lim-
ited to TFs with available ChIP-seq data.

Although computational footprinting has shown the ability
to predict TFBSs at an approximately consistent level, variation
in evaluation statistics is still observed across TFs. A previous study
showed that not all TFs will leave clear footprint-like nuclease
cleavage patterns, and their protection of DNA from cleavage is
correlated with residence time (Sung et al. 2014). For some TFs,
this can result in footprinting methods being unable to detect a
consistent footprint-like DNase digestion pattern and failing to
correctly label its binding sites. However, there is only limited res-
idence time data available for a small number of TFs, and no com-
prehensive examination on residence time’s impact on
footprinting quality has been completed. Although residence
time is known to be associated with enzymatic digestion patterns,
it is also correlatedwith the number of active binding sites. GR, AP-
1, and CTCF were tested by Sung et al. (2014) as TFs or TF subunits
with short, intermediate, and long residence times, respectively.
For those TFs included in our test (NR3C1 as GR group, JUN,
JUNB, JUND as AP-1 group, and CTCF), we observed that TFs
with a longer residency time tend to have a greater prevalence
and a better PR AUC from footprinting (Supplemental Fig. S11).
However, neither the ROC AUC nor ROC pAUC of these TFs was

correlated with residence time. This indicates the possibility that
the association between residence time and footprinting ability
might be caused by the correlation between performance evalua-
tion statistics and TFBS prevalence. The observed performance dis-
parity may only reflect the changes in fraction of active binding
sites among all putative motif sites.

Our evaluation on all footprinting methods indicates that
theremight be a limited classification accuracy gain that computa-
tional footprinting achieves, as the best performance for different
TFs all centered at a certain level of classification quality. Our anal-
ysis suggests that evaluation statistics of classification from foot-
printing may be largely influenced by TFBS prevalence, and
comparing them directly across TFs may be misleading.
Computational footprinting in general might have a maximum
potential for how well it can detect TFBSs, and only very limited
improvement can be achieved beyond this point.

Methods

Data and software

DNase-seq data in BAMand BED formats andChIP-seq data in BED
format were retrieved from the ENCODE download portal
(Supplemental Table S1). ATAC-seq data for GM12878 cells using
the standard ATAC-seq protocol were obtained from the NCBI
Gene Expression Omnibus (GEO) under accession number
GSE47753 (Buenrostro et al. 2013). Omni-ATAC-seq data were ob-
tained from the NCBI Sequencing Read Archive (SRA) with the
NCBI BioProject accession PRJNA380283 (Corces et al. 2017).
One hundred twenty-nine PWMs and cluster information
(Supplemental Table S2) were downloaded from the JASPAR data-
base (Khan et al. 2018). Motif sites were identified using FIMO
(MEME v5.0.3) with default parameters (Grant et al. 2011).
Evaluation statistics were generated using the Python package sci-
kit-learn (Pedregosa et al. 2011).

Data processing

After bias correction based on model and bias values reported by
He et al. (2014), we first counted the number of DNase-seq reads
at each location using the 5′ end of the reads, which is the
DNase I digestion site. These cut counts were then normalized
by the nonzeromean of the surrounding 10,000-bpwindow (with-
in data set normalization), as well as the percentile and standard
deviation from the entire region (between data set normalization)
(Supplemental Methods). Normalized signals were then smoothed
using the local regression method R (R Core Team 2018) function
LOESS (Cleveland et al. 1992), and their derivativeswere calculated
using the savitzky-golay filter in the Python package Scipy
(Vertanen et al. 2020). The first derivatives represent the slope of
the processed signal curve, and their signs indicate the increase
or decrease in data changes. UP, TOP, and DOWN states in the
peak have positive, zero, and negative slopes, respectively.

Evaluation

To assess the performance of TRACE and existing computa-
tional footprinting tools, we evaluated DeFCoM, BinDNase,
CENTIPEDE, FLR, PWM score only, DNase2TF, HINT, PIQ, and
Wellington based on scores or P-values provided by each method.
Candidate binding sites (motif sites) that overlapped with DNase-
seq peaks confirmed by ChIP-seq were used as the positive set,
and those not in ChIP-seq peaks but still overlapping DNase-seq
peaks made up the negative set. Prevalence was calculated as
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number of active binding sites (positive set) divided by total num-
ber of motif sites (positive set and negative set).

To provide a fair comparison across all methods, we applied
de novo methods to DNase-seq peaks (with 100-bp flanking re-
gions to each side) containing the same sets of motif sites that
were included inmotif-centricmethod tests. For de novomethods,
only the predictions overlappingwithmotif sites of tested TFswere
included in our evaluation; candidate binding sites that weremiss-
ing from their predictions were also included with an assigned
minimum score. For motif-centric methods and PWM-only evalu-
ations, only candidate binding sites provided are assessed; thus, all
predictions were included in the evaluation (Supplemental
Methods). Annotations and corresponding scores or P-values
were used to calculate the ROC AUC, ROC pAUC at a 5% FPR cut-
off, and PR AUC values for all TFs.

Permutation tests were performed by shuffling labels from
footprinting prediction results. Multiple simulation tests were
also includedbasedondifferent levels ofpositive andnegative sam-
ple separations and different positive example fractions. Scores for
positive and negative groups were randomly drawn from the nor-
mal distribution of different means and standard deviations.

Software availability

TRACE is an open source software; the source code, trained mod-
els, and predictions are available on GitHub (https://github.com/
Boyle-Lab/TRACE) and as Supplemental Code.
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