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Challenges in screening for de novo
noncoding variants contributing
to genetically complex phenotypes
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Summary
Understanding the genetic basis for complex, heterogeneous disorders, such as autism spectrum disorder (ASD), is a persistent challenge

in humanmedicine. Owing to their phenotypic complexity, the genetic mechanisms underlying these disorders may be highly variable

across individual patients. Furthermore, much of their heritability is unexplained by known regulatory or coding variants. Indeed, there

is evidence that much of the causal genetic variation stems from rare and de novo variants arising from ongoingmutation. These variants

occur mostly in noncoding regions, likely affecting regulatory processes for genes linked to the phenotype of interest. However, because

there is no uniform code for assessing regulatory function, it is difficult to separate these mutations into likely functional and nonfunc-

tional subsets. This makes finding associations between complex diseases and potentially causal de novo single-nucleotide variants

(dnSNVs) a difficult task. To date, most published studies have struggled to find any significant associations between dnSNVs from

ASD patients and any class of known regulatory elements. We sought to identify the underlying reasons for this and present strategies

for overcoming these challenges. We show that, contrary to previous claims, the main reason for failure to find robust statistical enrich-

ments is not only the number of families sampled, but also the quality and relevance to ASD of the annotations used to prioritize

dnSNVs, and the reliability of the set of dnSNVs itself. We present a list of recommendations for designing future studies of this sort

that will help researchers avoid common pitfalls.
Introduction

In human medicine, heterogeneous phenotypes are

frequently grouped into single disorders based solely on sim-

ilarities in clinical presentation. Diagnostic criteria for these

conditions usually consist of lists of symptoms, of which in-

dividual patients typically exhibit only a subset. As such, it is

possible for two patients to display completely disparate sets

of symptoms while still meeting the diagnostic criteria for

said disorder. Identifying the genetic basis of these disorders

is necessary for understanding their underlyingmechanisms

and developing effective treatments. However, the breadth

of phenotypes presented by individuals sharing the same

diagnosis reflects an underlying genetic basis that is at least

as complex. Indeed, the combination of subjective diag-

nostic criteria and the likely polygenic basis of most diag-

nostic symptoms makes it possible for individuals with the

samediagnosis tohavecompletelydistinct setsofunderlying

mutations affecting entirely different pathways. Dissecting

this variation is necessary to identify common themes in

the etiology and underlying mechanisms of these disorders.

Among these disorders, autism spectrum disorder (ASD)

stands out as one of the most complex, making it a good

case study for developing robust statistical methods to

identify novel variants contributing to complex disorders.

Such mutations are difficult to identify using traditional

statistical methods owing to the difficulty in objectively

grouping individual patients into cohorts and the fact
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that even patients with similar clinical presentation may

not share the same underlying genetic andmechanistic ba-

sis. Here, we use ASD to model complex, heterogeneous

phenotypes, and test strategies for identifying de novo

variants relevant to ASD given currently available whole-

genome sequencing datasets and functional genomic

annotations.

ASD is a term used to describe a group of neurodevelop-

mental conditions often characterized by difficulties

with social interaction, communication, and behavior. A

genetic basis for ASD was first established through twin

studies showing stronger concordance between monozy-

gotic siblings compared with dizygotic siblings.1–3 Most es-

timates now place the heritability of ASD in the range of

50%–90%.4–7 With technological improvements, several

classes of genetic variations have been revealed to

contribute to ASD etiology. This includes point mutations

and structural variants (such as copy-number variants),

pointing to a genetically heterogeneous background.8,9 It

is clear that many different types of genetic factors play a

role in ASD, and it would benefit the research community

to begin bridging the gaps in our understanding of the

underlying genetic heterogeneity. As a whole, common

variants contribute strongly to ASD. Individually, however,

each of these common variants are expected to have small

effects. This can be explained, in part, by the fact that var-

iants associated with large, harmful effects are less likely

than neutral variants to be maintained in a population.
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Conversely, uninherited variants that arise spontaneously

(de novo variants) may carry a higher risk than inherited

variants because they have not yet been acted upon and

removed by natural selection. While the combined effects

of common variants may contribute to a large portion of

the heritability of autism,4 de novo mutations may poten-

tially have larger individual impacts.

A significant role for protein-coding variants in ASD has

been established.10 Still, the coding variants that have

been identified account for only a fraction of the overall

heritability of ASD. There is evidence that the genetic

background of ASD likely involves a combination of both

coding and noncoding variation. Although effect sizes of

mutations in coding regions may, on average, be greater

because of their ability to directly affect amino acid se-

quences, mutations in noncoding regions may contribute

to autistic phenotypes in an alternate way: by disrupting

regulatory sequences.10 Regulatory elements, such as pro-

moters and enhancers, are responsible for controlling the

precise time, location, and level of gene expression. Muta-

tions disrupting regulatory elements may interfere with

proper expression of developmental genes in the brain;

for example, leading to phenotypes that are characteristic

of ASD. With more than 98% of the human genome

composed of noncoding DNA, those noncoding regions

present a logical place to potentially uncover some of the

missing heritability of autism. Indeed, most genome-

wide association study signals map to noncoding regions,

highlighting their importance. Therefore, investigation

of noncoding variation has the potential to uncover novel

ASD-associated variants.

Beyond the identification of noncoding variants, the

challenge of their functional interpretation remains. Previ-

ous studies have investigated possible roles of de novo

single-nucleotide variants (dnSNVs) in ASD by testing for

enrichment of functional evidence among dnSNVs in pro-

bands vs. siblings used as matched controls. However,

while these studies uncovered significant associations

with several coding categories, ascertaining the functional

impact of noncoding dnSNVs is more difficult. Whereas

known properties of open reading frames, splice sites,

and the biochemical properties of amino acids facilitate

coding dnSNV prioritization, no such code exists to prior-

itize noncoding dnSNVs. Despite this difficulty, previous

work has implied a modest contribution of de novo non-

coding variation in autism, although coding regions

exhibiting the strongest associations and noncoding asso-

ciations were not robust to multiple testing correction.11

The authors did not suggest that a noncoding association

does not exist, rather that the signal is not as strong as ex-

pected and that larger cohorts and careful attention to

multiple testing burden would be necessary to observe

any true signal from de novo noncodingmutations. Indeed,

other studies, which have focused on noncoding muta-

tions in ASD have also seen significant enrichment disap-

pear oncemultiple testing corrections have been applied.12

Nonetheless, those studies established that these rare
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mutations do play a role in ASD, underscoring the impor-

tance of improving methods with which to study them.

In recent years,wehave learned certain features associated

with active regulatory sequences, including epigenetic

marks, sequence motifs for various transcription factors

(TFs), chromatin accessibility, etc. Although we know that

regulatory sequences are associated with characteristic com-

binations of functional annotations (e.g., H3K4me1 and

openchromatin for enhancers), our ability topredict the reg-

ulatory functionofa locusbasedonoverlappingannotations

remains limited. Despite an abundance of publicly available

functional genomics datasets across many tissue and cell

types, a uniform functional code for regulatory sequences re-

mainselusive. In the absenceof suchacode, variantsmust be

prioritized based solely on their overlap with various combi-

nations of functional annotations thought to be important

for regulatory function. Several approaches for screening

and combining annotationshavebeenused toprioritize var-

iants in the ASD literature with varying degrees of success.

Most studies to date have leveraged the large number of

public datasets by combining individual functional annota-

tions into functional categoriesmeant to reflect the regulato-

rypotential of individual variants.A statistical test for enrich-

mentmust thenberunoneachof these functional categories

to identify if an excess of dnSNVs exists in probands, which

may signal an associationwith development of ASD. Since it

is not known in advance which categories will be informa-

tive, this strategy requires many individual tests to compre-

hensively screen for associations. Unfortunately, as the

number of annotations increases, the number of individual

tests increases exponentially, invokinga substantialmultiple

testing burden and potentially reducing statistical power by

orders of magnitude. As a result, very few studies have been

able to identify robust statistical enrichment of dnSNVs

within any functional category in ASD-affected individuals.

In nearly all of these studies, the solution presented for this

problem is to increase the number of families until sufficient

power is achieved.

We wanted to explore the implications and practicality

of the solution of increasing the study size in comparison

to implementing newer methods of variant prioritization

using computational models trained on functional

genomics data such as ChIP-seq and DNase-seq, in hopes

of identifying the optimal solution given current technol-

ogy. To this end, we analyzed whole-genome sequencing

data from 1,917 quad families in the Simons Foundation

Autism Research Initiative (SFARI) Simons Simplex Collec-

tion (SSC) cohort. These families represent a total of 7,668

individuals: 1,917 affected children and 5,751 unaffected

parents and siblings. This family structure is ideal for

identifying de novo variants and provides us with a natural

control group in the unaffected siblings. Using a set of

266,685 newly identified autosomal dnSNVs from this

cohort (134,969 from probands, 131,896 from unaffected

siblings), we quantified the ability of 65 selected combina-

tions of individual annotations, and scores from

published variant prioritization methods, to detect



differential associations with dnSNVs. These annotations

include data from functional genomics experiments from

the ENCODE project, phylogenetic conservation data

from phastCons, and scores from variant effect prediction

tools such as CADD, VEP, and RegulomeDB. In addition,

we annotated dnSNVs with scores from TURF (Tissue-spe-

cific Unified Regulatory Features), a tool used to prioritize

regulatory variants by leveraging evidence from functional

genomics experiments in amachine learningmodel. Other

annotations we have used include chromatin interaction

data and gene expression data from the GTEx project. For

each of these functional categories, we used 80% power

curves to predict the optimal sample size at which 80%

of tests are expected to be significant. We further evaluated

the relative effect size necessary to find a significant result

given the current sample size in each functional category,

expressed as the difference in dnSNV burden in probands

vs. siblings using 80% power curves. Finally, we used sim-

ulations to compare the actual effect sizes observed in pro-

bands and siblings to random expectations to assess

whether a significant test at any sample size is likely to

reflect biologically meaningful effects on ASD risk. Based

on these experiments, we can draw several conclusions

about current limitations in our ability to confidently iden-

tify dnSNVs contributing to ASD, and propose strategies to

improve future studies on the impact of dnSNVs on ASD

and other complex genetic disorders.
Materials and methods

Identification and filtering of dnSNVs
To identify candidate dnSNVs while minimizing false positives, we

implemented a pipeline to improve the quality of genotype and

variant calls before applying stringent filters. We first performed ge-

notype refinement using GATK’s13 CalculateGenotypePosteriors

tool and required all variants to pass the Variant Quality Score Reca-

libration filter, using a sensitivity threshold of 99.8%. We then

filtered the variant set down to biallelic SNVs and tagged potential

de novomutations if a variant was present in a child and not any of

the other familymembers, with the requirement that all four family

members haveGQR 20, DPR 10, and themore stringent of AC< 4

orAF<0.1%.This sameprocesswas followedseparatelybothforpro-

bands andunaffected siblings to identify dnSNVs for eachgroup.We

further filteredmutations down to exclude those appearing inmore

than one individual. Because the CalculateGenotypePosteriors tool

was only designed to handle trios, we created separate PED files for

probands and unaffected siblings, based on the PLINK pedigree file

format.We referenced a filemapping SSC individual IDs to SSC fam-

ily IDs, provided as a resource by the SSC, to generate these pedigree

files.

We annotated all SNVs with their minor allele frequencies

(MAF) using the Genome Aggregation Database (gnomAD) v.2.14

Following annotation, we filtered the variant set down to those

with a MAF less than 0.001. Variants for which a MAF was not

available were also retained. We then used the Picard

LiftoverVCF tool15 to lift over variants from the hg38 build to

hg19 since not all computational tools we used supported the

hg38 build at the time of analysis.
Hu
Some families for which data was collected were initially

enrolled in the SSC as simplex families but were later discovered

to be multiplex and flagged as such by SFARI. These families

were excluded from our analyses. Families were also excluded if

they were part of the Simons Ancillary Collection or the Simons

Twins Collection. To ensure that our identified mutations were

true SNVs, variants overlapping with low-complexity regions

were filtered out using UCSC’s RepeatMasker16 and TRF17 refer-

ence files. In addition, the Mills and 1000G gold standard set

was used as a reference for filtering out mutations overlapping

INDELS.18

Annotation of coding dnSNVs
We defined coding mutations predicted to be damaging using

Variant Effect Predictor (VEP)19 annotations. For generating pre-

dictions, we used the ‘‘-most_severe’’ tag to ensure that each

variant was assigned just one ‘‘consequence’’ instead of taking

every possible transcript into account for that variant. Variants

were considered to be ‘‘high-impact’’ dependent on their predicted

consequence, based on the VEP variant consequence table from

Ensembl.20 In addition, we considered variants to be predicted

loss of function (LoF) if they were annotated by SIFT21 as ‘‘delete-

rious’’ and by PolyPhen22 as ‘‘probably damaging.’’ To identify

genes that may be more susceptible to being affected by muta-

tions, we annotated mutations with a score developed by the

Exome Aggregation Consortium called pLI, which indicates a

gene’s probability of being intolerant to LoF mutations.23 A high

pLI score implies that a gene is LoF intolerant and we annotated

genes with pLIR 0.9 as extremely LoF intolerant. We downloaded

pLI scores from gnomAD under ‘‘gene constraint scores.’’14

Annotation of fetal brain enhancer and promoter

regions
To identify enhancer regions, we used combined male and female

fetal brain DNase-seq and ChromHMM data from the Roadmap

Epigenomics Project.24 Using core 15-state ChromHMM models

we identified regions containing histone marks corresponding to

the ChromHMM states ‘‘genic enhancers,’’ ‘‘enhancers,’’ and

‘‘bivalent enhancer.’’ We called those regions enhancers if they

also overlapped with DNase peaks. We used a similar process to

identify promoter regions, focusing instead on the ChromHMM

states ‘‘active TSS,’’ ‘‘flanking active TSS,’’ and ‘‘bivalent TSS,’’

before determining which of those regions overlappedwith DNase

peaks. We also annotated promoters through an alternate method

using the GENCODE25 release 19 gene annotation file. Using all

protein-coding genes, we defined promoters as the region within

1,500 bp upstream of the TSS of the respective gene.

Annotation with functional scoring tools
We generated TURF generic and brain-specific scores as described

in Dong and Boyle26 with the tool available at GitHub. We gener-

ated disease impact scores (DISs) following the instructions for

making predictions from the DNA model, provided at ASD

Browser.

Other annotations
We obtained a ‘‘rank’’ for dnSNVs using the original RegulomeDB

scoring system, with RegulomeDB v.2.0. Ranks can be obtained

from RegulomeDB. We considered mutations to have potentially

disruptive regulatory effects if they received scores of 2 or 3

(note that a score of 1 is not possible in de novomutations because
man Genetics and Genomics Advances 4, 100210, July 13, 2023 3



it requires an eQTL annotation). For chromatin interaction ana-

lyses we used promoter capture Hi-C data generated by Song

et al.27We applied thosemaps to our data to identify any potential

contacts between dnSNVs and gene promoters. If such a contact

was present, we assigned that mutation to the gene corresponding

to that promoter. We annotated variants with CADD v.1.428 using

offline scoring scripts, following instructions at GitHub for the

GRCh37 genome build. For identifying evolutionarily conserved

elements, we scored dnSNVs using the 46-way placental align-

ment phastCons29 track from UCSC’s Genome Browser.30 We

obtained a list of genes, along with rankings based on strength

of evidence of their association with ASD, from the SFARI Gene

database. We generated a list of genes that were found to be pref-

erentially expressed in brain tissue using data from Wells et al.31

Enrichment testing procedures
For each of the annotations tested, we compiled contingency ta-

bles for Fisher’s exact test (FET) by counting the number of pro-

band and sibling dnSNVs overlapping genomic regions falling

within the category and those falling outside the category. Individ-

ual FETs were performed for each annotation category using the

fisher.test method in R, with alternative ¼ ‘‘greater.’’32 When mul-

tiple tests were performed, multiple testing adjustments were

made using the FDR method in R.33,34 For TURF generic, TURF

brain-specific, and DISs, FET contingency tables were constructed

by counting proband and sibling dnSNVs scoring in the top 5% of

scores for each category. These were subjected to FET as described

above. Wilcoxon rank-sum tests were also performed on non

thresholded data from these categories to compare average score

rankings between proband and sibling cohorts. For all tests, p %

0.05 was used as the significance threshold.

Power analysis procedures
We performed the power analyses in R using the ‘‘pwr’’ package. To

calculate the power for each annotation category across varying

sample sizes we implemented the two-proportion test within the

pwr package. Proband and sibling proportions were defined as

the proportion of dnSNVs within a particular annotation category

compared with the total number of dnSNVs in probands and sib-

lings, respectively. We ran each calculation at a significance level

of 0.05, and with the alternative hypothesis being ‘‘greater.’’ To

test for statistically significant differences between power curves,

we performed two-sample Wilcoxon rank-sum tests in R using

vectors containing the power levels as the input parameters.

Reverse power analysis procedures
We produced ‘‘reverse’’ power curves, where we held the sample

size fixed and plotted power over a range of differential overlap-

ping proportions of proband and sibling dnSNVs for each annota-

tion category to assess how much additional information each

would need to convey to reach 80% power with 1,917 quad fam-

ilies. The same methods and thresholds described in the ‘‘power

analysis procedures’’ were then used to plot power curves with

the pwr R package.

Comparison with random permutations
To assess whether observed counts for each of our annotation cat-

egories significantly deviate from random expectations, we per-

formed a permutation analysis using the same input data used

for the FETs. Data were randomized by shuffling the ‘‘proband’’

and ‘‘sibling’’ labels across all dnSNVs for 10,000 permutations.
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For each permutation, we stored the number of proband and

sibling dnSNVs overlapping each annotation category in the

permuted data. Counts were used to generate an eCDF for each

annotation category, and the mean of this distribution was used

as the expected count for proband and sibling. We then calculated

Z scores to quantify the deviation between the observed proband

and sibling counts and the expected randomized mean based on

the standard deviation of the eCDF. Z scores of 2.0 or greater

were considered significant evidence for departure from random

expectation.

Comparison of dnSNV datasets across studies
For comparisons between studies, we obtained the publicly avail-

able dnSNV datasets from each of the other groups we included

in our analyses. As with our own set, we restricted the variants

to autosomal dnSNVs. We generated the UpSet plot using Inter-

vene35 and UpSetR.36 For direct comparison between our variant

set and that of Zhou et al. we used BEDTools36,37 to obtain the

intersection, union, and disjoint sets.
Results

dnSNV calls show substantial overlap with previous

studies

From the SSC, we identified a median count of 70 auto-

somal dnSNVs per proband (134,969 total autosomal pro-

band dnSNVs). This is consistent with the estimated muta-

tion rate in the general human population.38,39 Compared

with the median of 68 autosomal de novo mutations we

identified in the unaffected siblings (131,896 total auto-

somal sibling dnSNVs), we did not observe a statistically

significant difference in dnSNV count between the pro-

band and sibling groups (Figure 1A).

We annotated and categorized the dnSNVs into the

following genomic regions: 30 UTR, 50 UTR, intergenic,

intronic, and coding. Roughly 98% of dnSNVs overlap

noncoding regions of the genome, which falls in line with

coding regions comprising �1.5% of the human genome.

When taking all dnSNVs into account, within each

genomic region, there is not a statistically significant differ-

ence in counts between probands and siblings (Figure 1B).

We compared our list of identified dnSNVs with those

from four other published studies which also used the

SCC data (Figure 1C). Approximately 84% of the dnSNVs

we identified have also been identified by at least one of

these four groups.11,12,40,41 While all compared groups

used data from the same cohort (SSC), the number of

cohort families included in each group’s respective ana-

lyses varied. The largest number of variants shared be-

tween studies came from the intersection of our study

(1,917 families included in analyses) with that of An

et al. (1,902 families). The next highest overlap in variants

came from the intersection between three studies: our

own, An et al. and Zhou et al. (1,790 families). As would

be expected, there was a smaller amount of overlap with

the studies that included fewer families on account of

data availability at the time of their publication (Turner

et al., 516 families; Werling et al., 519 families).
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Figure 1. Distribution of dnSNVs from whole-genome sequencing of the Simons Simplex Collection
(A) Distribution of dnSNVs across 1,917 families from the SSC. Probands (blue) have a median of 70 dnSNVs per child while the median
for unaffected siblings (light pink) is 68 dnSNVs. The darker pink bars indicate overlap in counts between probands and siblings. The
difference in counts between the two groups is not statistically significant.
(B) Distribution of dnSNVs by genomic region. Approximately 98% of all dnSNVs identified and used in this study land in intronic or
intergenic regions. The number of dnSNVs in each category is not significantly different between probands and siblings.
(C) UpSet plot 35 showing total number of dnSNVs identified across different individual studies (gold bars), all using the SSC cohort data.
Blue vertical bars indicate the number of variants identified by more than one study (solid black points connected by black line) or var-
iants only identified by a single group (solid black point). Although all families are part of the same cohort, the number of families uti-
lized by each study varies, shown in the table.
De novo coding variants show significant association

with ASD

To validate our dnSNV calling and enrichment testing stra-

tegies, we wanted to first show our ability to recover en-

richments of high-impact coding mutations, which have

been previously shown to be significantly associated with

ASD,10 within proband dnSNVs. We prioritized dnSNVs

by annotating them using VEP,19 SIFT,21 and PolyPhen.22

Mutations were classified as predicted LoF coding muta-

tions (LOFCMs) if they were annotated as ‘‘high-impact’’

by VEP, or as both ‘‘deleterious’’ by SIFT and ‘‘probably

damaging’’ by PolyPhen. We used FET to weigh the evi-
Hu
dence for a statistically significant excess of predicted

LOFCMs in probands compared with siblings.

Consistent with our expectations, we observed 604

proband LOFCMs compared with 467 sibling LOFCMs,

representing a statistically significant enrichment (FET,

FDR-adjusted p ¼ 0.002) (Figure 2). In all, over 90% of

VEP high-impact variants were stop-gain mutations,

which result in premature stop codons and, in turn, trun-

cated transcripts. These stop-gain mutations were enriched

even more strongly than all LOFCMs, with nearly twice as

many found in probands compared with siblings (120

vs. 62 mutations; FET, FDR-adjusted p ¼ 0.001). Taken
man Genetics and Genomics Advances 4, 100210, July 13, 2023 5



Figure 2. Relative risk of proband dnSNVs
across 65 annotation categories, including
combinations of different annotations
A relative risk >1 represents enrichment of
dnSNVs in the proband group. The only cat-
egories that remain significant after multiple
testing correction are related to coding re-
gion annotations.
together, these observations show that we are able to

recover known enrichments within our dnSNV dataset.

Proband dnSNVs are not enriched for predicted

regulatory variants

We next wanted to extend our enrichment testing strategy

to noncodingmutations. Specifically, we were interested in

determining if we could detect an enrichment of proband

mutations with the potential to affect regulatory function.

We wanted to know whether a more comprehensive set of

dnSNVs coupled with our FET screening strategy would

yield any statistically significant enrichments in noncod-

ing regulatory annotation categories.

This approach relies on our ability to predict how likely

noncoding variants are to affect regulatory function. Most

published studies have done so based on overlap with

genomic annotations commonly associated with cis-regu-

latory regions. Annotations are derived from the Encyclo-

pedia of DNA Elements (ENCODE) project and include

open chromatin (DNase-seq and DNase footprinting) and

TF binding sites (ChIP-seq) among others. These are

commonly combined into annotation categories; either

exhaustively, by selecting a subset manually, or by using

computational methods. However, more recent studies

have turned to machine learning to identify the relation-

ships between functional annotations and ASD. The

distinct advantage of this approach is that it may reduce

or obviate the need for multiple testing corrections. To
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compare these strategies, we selected a

combination of annotation categories

and prioritization scores and pro-

ceeded with enrichment tests to deter-

mine if any significant associations

could be recovered.

As representative manually curated

annotation categories, we combined an-

notations from the ENCODE database

for ChromHMM and DNase-seq,

enhancer and promoter predictions

from the Roadmap Epigenomics Proj-

ect,24 chromatin interaction data from

Song et al.,27 and brain-specific gene

expression data from.31 These were

used to isolate sets of likely promoter

and enhancer regions targeting genes

expressed in the brain. Given known

features of ASD etiology, these two

genomic compartments seemed likely
to harbor an enrichment of dnSNVs affecting relevant regu-

latory functions. However, when considering the number of

mutations overlapping enhancers we saw no significant

difference between the proband and sibling groups (3,114

vs. 3,053, respectively; p ¼ 0.79, FET). Similarly, there was

no enrichment of mutations within promoters (1,814 vs.

1,750; p ¼ 0.5, FET).

As representative variant prioritization methods, we

selected TURF, a probabilistic scoring model that prioritizes

in a tissue-specific manner, which replaced the original cat-

egorical scores in the current release of RegulomeDB.42 For

noncoding variants, we scored each dnSNV with two

different TURF prediction scores; one score was based on a

previous implementation of TURF, which scores variants

in a generic context (independent of tissue).43 The second

score was generated by the current implementation of

TURF, in which functional variants are predicted in a tis-

sue-specific context26 We calculated these scores based on

functional evidence specifically from brain tissue, which

we could reasonably expect to be more relevant to ASD.

For both generic and brain-specific TURF scores, FETcontin-

gency tables were constructed based on overlap with posi-

tions scoring in the top 5%of annotated sites. In both cases,

tests were not significant after multiple testing correction,

similar to previous studies (generic TURF: FET, FDR-adjusted

p ¼ 0.6; brain-specific TURF: FET, FDR-adjusted p ¼ 0.5)

(Figure 2). Since TURF scores are numeric and continuous,

we retested for enrichment using Wilcoxon rank-sum tests,
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Figure 3. Power analyses for detecting variant enrichment using different prioritization strategies
(A) Power analysis for detecting proband enrichment of different categories of dnSNVs. The black dashed line indicates our current sam-
ple size (1,917 quad families). We have estimated the sample sizes necessary to detect association of dnSNVs with ASD. We estimate a
power of�97%when testing for enrichment of high-impact coding dnSNVs in probands at our current sample size. Themissense coding
category yields a power of 27%. Brain-specific TURF scores (32% power) would require �10,000 more families to achieve 80% power.
Over 50,000 families would be necessary for generic TURF scores (12%) to reach that same 80% threshold. The fetal brain promoter cate-
gory slightly outperforms the generic TURF scores at 13%.
(B) Generic TURF starting power¼ 0.12, achieves 80% at�3.2% increase (�240 additional variants, 7,370 observed). Brain TURF starting
power ¼ 0.32, achieves 80% at �2.2% increase (�150 additional variants, 6,828 observed). Fetal brain starting power ¼ 0.14, achieves
80% at �6.5% increase (�117 additional variants, 1,806 observed).
(C) Observed counts of proband (blue bars) and sibling (red bars) dnSNVs prioritized with three different noncoding annotations. We
observed no significant difference between random counts (green bars) and counts in probands or siblings (Z scores: fetal brain
promoters ¼ 0.53, TURF generic ¼ 0.48, TURF brain ¼ 1.16, permutation tests).
which also failed to reach significance (generic TURF: Wil-

coxon rank-sum test, p ¼ 0.83; brain-specific TURF: Wil-

coxon rank-sum test, p ¼ 0.89).

Tissue- and disease-specific annotations are more

informative than tissue-agnostic annotations

Given the lack of enrichments observed for any noncoding

annotation categories or prioritization scores, we wanted

to further explore how informative these annotations actu-

ally are. Since most previous studies failing to show signif-

icant enrichments have cited insufficient sample size as

their primary limitation, we first asked what sample size

would be necessary to achieve 80% power in our statistical

tests. To do so, we plotted power curves for three noncod-

ing annotation categories and prioritization scores: TURF

generic, TURF brain-specific, and fetal brain promoters.

For comparison, we included two coding annotation cate-
Hu
gories: missense variants, regardless of severity of impact,

and high-impact variants, which are likely to lead to LoF.

Considering a desired power threshold of at least 80%,

our analyses revealed that we are underpowered to detect

enrichment of dnSNVs in probands for any of the noncod-

ing categories given our sample size of 1,917 quad families

(Figure 3A). As a baseline, we estimated a power of �97%

when testing for enrichment of high-impact coding

dnSNVs using the same sample size. However, it is notable

that the missense coding category yielded only �27% po-

wer at the current sample size, slightly below the highest-

performing noncoding category: TURF brain-specific

scores (�32% power). TURF brain-specific scores were

estimated to reach 80% power at a sample size of

�10,000 families.

We note that if we were to instead use generic (non-

brain-specific) TURF scores for prioritization, over 50,000
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families would be necessary to achieve 80% power, high-

lighting the potentially profound effects of the choice of

training strategy for variant prioritization. In particular,

we see that including data directly relevant to the tissue

and developmental stage under study offers a significant

improvement for this application. This is underscored by

the observation that generic TURF scores (�12% power)

underperformed the manually curated fetal brain pro-

moter category (�13% power) even though generic

TURF scores incorporate more annotations to generate

their prioritization scores. This is a statistically significant

difference in power (Wilcoxon rank-sum test, p ¼ 6.0 3

10�12). Even so, an estimated 37k families would be

required to reach 80% power for detecting enrichment of

fetal brain promoter mutations, showing that neither of

these annotation categories are particularly informative

in terms of ASD risk, at least with presently available

genome-wide datasets.

Improving annotation quality has more impact on

empirical power than increasing sample size

Wewanted to resolve the question of whether a significant

test result based on a larger sample size would actually

reflect a meaningful association between any of these

annotation categories and ASD. To further dissect the

strength of associations between proband dnSNVs and

ASD, we assessed statistical power for each annotation

category at a fixed sample size over a range of effect sizes.

We defined the effect size for an annotation category as

the difference between the fractions of proband and sib-

ling dnSNVs within a given annotation category. The

magnitude of this difference is indicative of the strength

of the association between an annotation and ASD. A high-

ly informative annotation category would be expected to

associate mostly with proband dnSNVs and only rarely

with sibling dnSNVs, so ‘‘overlapping’’ counts in the FET

contingency table would be highly skewed toward the pro-

band column. The effect size, therefore, would be relatively

large. By contrast, an uninformative classifier would asso-

ciate randomly with proband and sibling dnSNVs; i.e.,

the observed proportions of proband and sibling dnSNVs

overlapping the annotation category would be equal.

Thus, the observed effect size would be very small. We

wanted to assess how informative our annotation cate-

gories actually are in differentiating between proband

and sibling cohorts. More precisely, we wanted to ask if

we could improve an annotation to make it more informa-

tive, how much more information must it convey to

achieve 80% power at the current sample size? We inter-

preted this as an ersatz quality metric for each annotation

category.

We evaluated howmuch we would need to inflate the ef-

fect size of each annotation category by plotting curves

relating statistical power to the proportion of excess infor-

mation in probands relative to siblings in FETs. In this

framework, zero effect size is observed when both proband

and sibling have equal proportions of dnSNVs overlapping
8 Human Genetics and Genomics Advances 4, 100210, July 13, 2023
a given annotation category. We then emulate the conse-

quences of increasing the effect size by increasing the pro-

band overlapping proportion while holding the sibling

proportion fixed, thus artificially increasing the effect

size of the annotation category. By thus recalculating

empirical power over a range of effect sizes, we can plot

curves showing the necessary effect size increase to reach

80% power at the current sample size (Figure 3B).

Consistent with our power analysis results, brain-specific

TURF scores required the smallest increase in effect size to

reach 80% power, approximately 2.2%, or roughly 150

more than the 6,828 we actually observed. This makes

them somewhat more informative than generic TURF

scores, which would require a 3.2% increase of dnSNVs

overlapping the top 5% of scores, or 240 more dnSNVs

than the 7,370 actually observed. The difference in effect

size is statistically significant (Wilcoxon rank-sum test,

p ¼ 2.1 3 10�11). However, both variant prioritization

methods performed substantially better than themanually

curated fetal brain promoter category, which would require

a 6.5% increase in information to achieve 80% power at

the present sample size, or 117 variants in addition to

the 1,806 observed.

Comparison of current annotations to random

permutations

Given the results of both the power and effect size ana-

lyses, we can conclude that the most informative noncod-

ing annotation category among those tested were TURF

brain-specific scores. However, even though only a modest

increase in either sample size or effect size was necessary to

get to 80% power, the actual enrichment test still failed to

reach significance. All others performed significantly

worse: extreme increases in either sample or effect sizes

would be necessary to reliably detect enrichments. This

led us to question whether these annotation categories

actually conveyed significantly more information than

random expectations.

For each of the three noncoding annotation categories,

we modeled the expected random overlap of proband

and sibling dnSNVs with the given annotation category

by randomly shuffling ‘‘proband’’ and ‘‘sibling’’ labels

across all dnSNVs for 10,000 permutations. The mean

number of overlapping proband and sibling dsSNVs across

permutations were then compared with the applicable

observed counts (Figure 3C). Z scores were calculated to

quantify the degree of departure between the observed

count and its random expectation. Z scores exceeding 2.0

were considered significant. However, the observed Z

scores for all categories were well under this threshold.

Notably, TURF brain-specific scores, which performed the

best in our other tests, was the only annotation category

with a Z score exceeding 1 (�1.16). By comparison, the

high-impact coding category produced a Z score of �3.57

using these methods. Therefore, we can conclude that

even the best of our annotation categories are relatively

uninformative in regard to ASD risk or etiology.



dnSNV calls show variable quality across studies

We have seen the limitations of sample size and variant ef-

fect size across several studies conducted by other research

groups who have used the same raw data from the SSC to

study noncoding mutations in ASD. Interestingly, while

all these studies are subject to the same limitations, their

results appear to vary substantially in terms of the specific

associations found, with little reproducibility between

groups, even when testing methods were similar.

To date, only one study has reported a robust statistical

enrichment in a noncoding category.41 The authors use a

DIS to prioritize dnSNVs relative to their impact on brain

disease. This method is an extension of DeepSea,44 a ma-

chine-learning model that assigns functional scores to in-

dividual variants based on overlap with functional annota-

tions from ENCODE and other sources. DIS extends this

model by way of training on a curated set of known fea-

tures related to brain disease phenotypes. The authors

found significant evidence for higher DISs in probands

compared with siblings (p ¼ 0.009, one-sided Wilcoxon

rank-sum test), with an effect size (which they defined as

the difference between the average DIS in probands and

siblings) of approximately 0.01.

We wanted to know whether DISs would yield a signifi-

cant enrichment within our data as well, so we tested our

own set of dnSNVs but found no enrichment using either

FET (p ¼ 0.214, one-sided FET) or Wilcoxon rank-sum tests

(p ¼ 0.071, one-sided Wilcoxon rank-sum test). This

prompted us to investigate the effect of the specific set of

dnSNVs on test results. We investigated this by testing

for association of DISs within the union, intersection,

and disjoint fractions of our dnSNVs and those from

Zhou et al. For each of these fractions, we repeated theWil-

coxon rank-sum test as before, making note of whether a

significant difference was apparent.

The only significant result we observed was for the inter-

section (111,029 dnSNVs) of both datasets (p < 0.0026,

one-sided Wilcoxon rank-sum test, effect size ¼ 0.014),

which actually showed stronger evidence for enrichment

than Zhou et al. originally reported (p ¼ 0.009, one-sided

Wilcoxon rank-sum test). By contrast, neither the union

(p ¼ .083, one-sided Wilcoxon rank-sum test) nor disjoint

datasets produced a significant result, with the lowest per-

formance observed for the disjoint sets (this study: p ¼
0.99; Zhou et al.: p ¼ 0.73). This suggests that the quality

of dnSNV calls varies, with the highest-quality calls also be-

ing the most reproducible.

We further tested this hypothesis by intersecting our var-

iants with those from the previously mentioned four other

groups who have used their own methods to identify

dnSNVs in the SSC cohort (Figure 1C). We filtered down

our set of dnSNVs by keeping only those that appeared

in at least two of these other groups’ published sets.

Once again, performing the Wilcoxon rank-sum test on

the intersection set of dnSNVs revealed a significant differ-

ence in DIS between probands and siblings (p ¼ 0.02837),

albeit at lower confidence compared with the intersection
Hu
between our dnSNVs and those from Zhou et al. We spec-

ulate that this decrease results from the decrease in overall

sample size incurred due to the smaller absolute size of the

dnSNV datasets in other studies.

Altogether, these results suggest that intersecting vari-

ants across sets of calls leads to an overall increase in qual-

ity among the dnSNV calls. We postulate that the disjoint

sets of variants from across studies are enriched for false-

positive variant calls, which may arise due to sequencing

errors, genotyping errors, or other unknown sources. If

not filtered out, these false-positive dnSNVs may dilute

the signal from true dnSNVs sufficiently to prevent a sig-

nificant test result even when an annotation is genuinely

associated with ASD.
Discussion

Prior to this analysis, several groups have used data from

the SSC to seek associations between noncoding dnSNVs

and ASD, with all but one yielding no statistically signifi-

cant enrichments. Our results on three different noncod-

ing annotation categories were consistent with their re-

sults in that we found no significant associations. Our

testing methods reproduced previously demonstrated en-

richments of proband dnSNVs within high-impact coding

annotation categories. However, it was not immediately

clear if we observed no noncoding enrichments due to

insufficient sample size, as suggested by the authors of

most previous studies, or the inability of the annotations

we chose to reliably differentiate between regulatory and

neutral noncoding variants.

To systematically investigate these possibilities, we set out

toobjectively evaluate how informative current annotations

are in regard to differences in functional effects of dnSNVs in

probands vs. siblings. This allowed us to compare different

strategies in terms of their effects on our ability to find

potentially revealing genomic associations. Specifically, we

explored the impact of sample size, choice of annotations/

variant prioritization methods, and choice of variant sets

onourpower todetect associationsbetween de novononcod-

ing genetic variation and ASD.

Based on observed dnSNV counts in probands and sib-

lings, our power analysis suggests at least 10,000 quad fam-

ilies would be necessary to achieve a power of at least 80%

to detect an association between our best-performing non-

coding annotations category and ASD. Although autism

cohorts are constantly growing, this is approximately five

times as many quad families than are currently available

in the SSC. More importantly, though, the necessity of

such a large number of families suggests a very small effect

size, begging the question of whether such effects are

meaningful. We show evidence that, in fact, current anno-

tations are only slightly more informative than random

expectations. A significant statistical test result implies an

underlying difference in the proportion of dnSNVs car-

rying a given annotation between probands and siblings.
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Assuming individuals are drawn uniformly from across the

population, increasing sample size will not change the

observed sample proportions but will increase the likeli-

hood of type 1 errors. Therefore, increasing sample size

alone may lead to erroneous associations between func-

tional categories and ASD.

What we see from this is that it is not only the sample

size that is limiting our ability to detect the effects of the

dnSNVs, but also their effect sizes. This suggests that

certain annotation categories may not sufficiently capture

meaningful differences between probands and siblings:

i.e., the annotations used are unable to reliably differen-

tiate between noncoding dnSNVs that are neutral (without

regulatory effects) and those capable of disrupting regula-

tory function. Thismay be amplified particularly in pheno-

typically heterogeneous disorders such as ASD, a problem

which could be addressed in future studies by stratifying

by ASD subclasses. Therefore, an insignificant test result

may not actually reflect lack of signal, but that the signal

has been attenuated by high-scoring dnSNVs that actually

lack functional significance. This effect may be particularly

problematic if we rely solely on our intuition when

choosing annotation categories. This is demonstrated by

the poor performance of the fetal-brain-promoter

category in this study; even though it is based on relevant,

tissue-specific annotations, it still fails to produce a signif-

icant association. Thus, the most important choice when

designing an experiment is likely which annotation cate-

gory/ies and/or prioritization score(s) to use, keeping in

mind the need to minimize multiple testing burden. Werl-

ing et al. illustrated the importance of multiple testing

burden in a study that included a comprehensive set of

>13k annotation categories, among which no significant

associations were found after correcting for multiple

tests.11

Accordingly, it is likely that improving annotations and

prioritization scores, particularly in relation to their rele-

vance to the specific tissue/disorder under study, is more

likely to yield meaningful performance gains than

increasing the number of available families for study. For

example, we note that brain-specific TURF scores per-

formed significantly better than generic TURF scores, high-

lighting the importance of using tissue-specific annota-

tions when possible. We estimate nearly five times as

many families would be necessary to achieve a power of

80% when using the generic TURF scores compared with

tissue-specific TURF scores. Furthermore, DISs, which are

specifically trained on disease-related features, outper-

formed TURF brain-specific scores even though the under-

lying training feature sets share substantial overlaps. A

clear limitation when investigating the impact of noncod-

ing mutations in ASD is there are a great deal of ways with

which we can choose to annotate and prioritize variants.

In theory, we isolate the variants with evidence of being

functionally relevant so that we can then use that subset

of variants to test for genotype-phenotype associations.

However, depending on the choice of annotations, the
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sets of variants being tested can be very different from

each other, which would have downstream consequences

on the observed results.

Of the variant prioritization methods we implemented

in this study, we achieved the greatest power when using

tissue-specific TURF scores. Using a combined-annotation

scoring system, such as TURF, comes with advantages

compared with using individual annotations. For one, it

minimizes the multiple testing burden because multiple

annotations are already built into the scoring system

without having to test them individually. In addition,

combined-annotation scoring systems also help eliminate

any bias introduced by the manual selection of annota-

tions. Manual selection of annotations relies on the inves-

tigator’s pre-conceived notions of which genomic regions

may or may not be relevant or functional, and therefore

has the potential to introduce irrelevant data or miss sour-

ces of true signal. Previous investigators who have focused

on a few specific genomic regions (e.g., promoters, UTRs)

have themselves pointed out that not all possible classes

of noncoding regulatory elements were considered in their

study,12 which could allow for other important regions to

be missed. Zhou et al. have provided further evidence of

the utility of combined-annotation scoring systems in

their work in which they detected a significant burden of

mutations affecting transcriptional and post-transcrip-

tional regulation in ASD probands compared with their

unaffected siblings using their DIS.41 We note that some

differences in results between our group’s work and that

of Zhou et al.’s could be attributed to the fact that their

prioritization scoring method was trained using a set of

mutations specifically associated with disease from the Hu-

man Gene Mutation Database, while TURF was trained on

SNVs associated with general regulatory function.

Different methods for identifying dnSNVs will yield

different lists of mutations, even when starting with the

same sequencing data or variant calls. These differences

in lists between research groups can negatively affect

reproducibility, and in fact we provide evidence that

when working with the intersection of dnSNVs from other

groups we can improve the overall ability to detect associ-

ations. When comparing the sets of mutations identified

by different groups, including our own, it is encouraging

to see that many of the same dnSNVs can be reproduced

across groups (Figure 1C). We can reasonably expect to

have higher confidence that the intersections of the sets

represent true dnSNVs. Indeed, the fact that the intersec-

tion of our dataset and Zhou et al. yielded a stronger

enrichment for DISs than either dataset alone suggests

that the intersection is itself enriched for regulatory vari-

ants as compared with variants in the disjoint set. This is

consistent with the possibility that variants discovered

by only one group may be more likely to be false positives.

We do note that some differences in dnSNV sets may be

attributed to the fact that some studies included families

that others did not, and there was little consistency in

dnSNV identification methods across studies. Taking this
3



into account, we suggest that improvedmethods of dnSNV

identification and validation are likely to generate substan-

tial improvements.

We were surprised to note that the use ofWilcoxon rank-

sum tests instead of FET had disparate effects when using

TURF brain vs. DISs. Specifically, TURF brain scores per-

formed better with FET (FET p ¼ 0.5; Wilcoxon rank-sum

test, p ¼ 0.89), whereas DIS performed better with Wil-

coxon rank-sum (Wilcoxon rank-sum test, p ¼ 0.071; FET

p¼ 0.214). This suggests that different prioritization scores

may include biases that affect our ability to detect associa-

tions with a phenotype of interest. For example, while

dnSNVs scoring within the top 5% of TURF brain-specific

scores are modestly (but not significantly) enriched in pro-

bands, proband dnSNVs do not systematically rank higher

than sibling dnSNVs based on their Wilcoxon rank-sum

test results. By contrast, the reverse is true for DIS. While

it is not immediately clear what may be responsible for

the difference, it raises the question of whether a single sig-

nificant test result can be considered definitive evidence of

correlation or whether hidden structure may sway test re-

sults if only a single testing method is used, or whether

disparate test results reflect shortcomings in the quality

of a given annotation. This suggests that it may behoove

researchers to compare results across different testing

methods, giving preference to annotations that show

consistent performance regardless of method.

Taking all these findings into account, we can make

several recommendations for testing associations between

genetic disorders and rare de novo variants:

(1) Start with a high-confidence set of dnSNV calls,

possibly leveraging intersections with other pub-

lished datasets.

(2) Select annotations and/or training features relevant

to the tissue and/or phenotype of interest. Our re-

sults showed that brain-specific TURF scores outper-

formedgeneric TURFbyawidemargin. Likewise,DIS

outperformed brain-specific TURF in average score

rank in probands vs. siblings, the difference being

that the DIS model was trained on disease-specific

regulatory variants, not general regulatory variants.

(3) Do not rely on intuition alone in selecting annota-

tions. Currently available machine-learning models

do a better job of isolating signal from noise among

a large and varied set of individual annotations.

(4) Improving prioritization scores rather than

increasing sample size is more likely to yield posi-

tive results. In particular, choosing training data

that are relevant to the tissue or phenotype under

study is of critical importance.
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