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Abstract: Triple-negative breast cancer (TNBC) is the breast cancer subtype with the poorest
prognosis and lacks actionable molecular targets for treatment. Maternal embryonic leucine
zipper kinase (MELK) is highly expressed in TNBC and has been implicated in poor
clinical outcomes, though its mechanistic role in the aggressive biology of TNBC is poorly
understood. Here, we demonstrate a role of MELK in TNBC progression and metastasis.
Analysis of publicly available datasets revealed that high MELK expression correlates with
worse overall survival, recurrence-free survival, and distant metastasis-free survival, and
MELK is co-expressed with metastasis-related genes. Functional studies demonstrated
that MELK inhibition, using genomic or pharmacologic inhibition, reduces mammosphere
formation, migration, and invasion in high-MELK-expressing TNBC cell lines. Conversely,
MELK overexpression in low-MELK-expressing cell lines significantly increased invasive
capacity in vitro and metastatic potential in vivo, as evidenced by enhanced metastasis to
the liver and lungs in a chorioallantoic membrane assay. These findings highlight MELK as
a key regulator of TNBC aggressiveness and support its potential as a therapeutic target to
mitigate metastasis and improve patient outcomes.

Keywords: MELK; triple-negative breast cancer (INBC); metastasis; invasion; migration;
tumor initiation

1. Introduction

Breast cancer remains the most commonly diagnosed invasive cancer among women in
the United States and is the second leading cause of cancer-related mortality [1]. Advances
in early detection and treatment have improved outcomes for many subtypes of breast
cancer; however, disparities persist, particularly for aggressive subtypes. Breast cancer is
not a single disease, but a heterogeneous group of malignancies defined by the presence
or absence of molecular markers such as estrogen receptor (ER), progesterone receptor
(PR), and HER?2 amplification. These markers guide the development of targeted therapies,
which have significantly improved survival in patients with hormone receptor-positive
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or HER2-positive breast cancers. Unfortunately, 10-25% of breast cancer cases lack these
markers, classifying them as triple-negative breast cancer (TNBC), a subtype associated
with poor prognosis and limited treatment options [2,3].

TNBC is characterized by its rapid progression, early metastasis, and marked hetero-
geneity both within and between tumors [4-7]. Compared to other breast cancer subtypes,
TNBC exhibits a higher proportion of breast cancer stem cells (BCSCs), which are associated
with tumor initiation, therapeutic resistance, and metastasis [8]. These factors, coupled
with the absence of actionable molecular targets, contribute to TNBC’s aggressive nature
and make it one of the most challenging breast cancer subtypes to treat effectively. Current
treatment strategies including chemotherapy, surgery, and radiotherapy are often initially
effective, but rates of disease recurrence and metastasis are higher in women with TNBC,
underscoring the urgent need for novel therapeutic targets [4,5].

Maternal embryonic leucine zipper kinase (MELK) has emerged as a potential driver
of aggressive cancer phenotypes and a promising therapeutic target in TNBC. MELK
is a serine/threonine kinase that is overexpressed in multiple malignancies, including
breast cancer, where its expression is particularly high in TNBC compared to ER-positive
subtypes [9-11]. High MELK expression correlates with poor overall survival, shorter
recurrence-free survival, and increased likelihood of distant metastasis [10-12]. Function-
ally, MELK has been implicated in regulating cell cycle progression, stem cell maintenance,
and metastatic behavior [10]. These roles are supported by MELK'’s interactions with
oncogenic pathways, such as FOXM1 activation and NF-kB signaling, which are critical
in TNBC pathobiology [10,13-15]. Furthermore, its minimal expression in normal tissues
makes MELK an attractive target for cancer-specific interventions [11,16].

Given the aggressive nature of TNBC and the lack of effective targeted therapies, there
is significant interest in exploring MELK as a potential therapeutic target. Building on
previous studies that highlight MELK’s role in tumorigenesis, radiation resistance, and
metastasis, we sought to further characterize its functional relevance in TNBC [10,17]. In
this study, we integrate clinical data analyses with preclinical models to examine the impact
of MELK expression on survival, tumor-initiating properties, and metastatic potential.
Specifically, we assess how MELK knockdown and pharmacological inhibition affect cancer
stem cell properties, migration, and invasion; and how MELK overexpression influences
metastatic capacity in vivo. These findings aim to provide a foundation for the development
of MELK-targeted therapies that could improve outcomes for patients with this aggressive
breast cancer subtype.

2. Results
2.1. High MELK Expression Correlates with Poor Survival Outcomes in Breast Cancer

Kaplan-Meier survival analyses were conducted on data from the Kaplan-Meier Plot-
ter database for breast cancer stratified by median MELK expression to evaluate the impact
of MELK expression on clinical outcomes, including overall survival (OS), recurrence-free
survival (RFS), and distant metastasis-free survival (DMFS), in breast cancer patients [18].
Breast cancer gene expression and clinical outcome data were assembled for 7830 unique
tumor samples from 55 independent datasets. Relapse-free survival was available for
5268 patients and overall survival time for 5165 patients [18]. Clinical characteristics for
the entire database were described previously, including receptor status, grade, lymph
node status, molecular subtype distribution, applied treatment, and length of follow-up for
relapse-free survival [18]. Patients with higher than median MELK expression exhibited
significantly worse survival across all metrics compared to those with lower than median
MELK expression. For OS (n = 1879), the median survival was 66.12 months (5.5 years) in
the high-expression cohort versus 136.80 months (11.4 years) in the low-expression cohort
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(Figure 1A). Similarly, for RFS (n = 4929), the median time to recurrence was 171.43 months
(14.3 years) for the high-expression cohort compared to 216.66 months (18.1 years) for the
low-expression cohort (Figure 1B). For DMFS (n = 2765), the high-expression cohort had a
median distant metastasis-free time of 41.64 months (3.5 years), compared to 137.00 months
(11.4 years) in the low-expression cohort (Figure 1C). These data indicate that elevated
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Figure 1. High MELK expression is associated with significantly worse survival. Using a large
publicly available data source (KMplot.com), the effect of MELK expression on various survival
metrics was measured. MELK expression was stratified by median expression, with higher and lower
than median expression evaluated. (A) Overall survival, (B) recurrence-free survival, and (C) distant
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metastasis-free survival were compared with HR and p-values depicted. HR: Hazard ratio.

To explore potential mechanisms underlying the association between MELK expres-
sion and poor prognosis, we analyzed the transcriptomic profiles of primary breast cancer
tumors from the TCGA-BRCA database (n = 1111). This analysis, as described in the
methods, identified 14,503 genes significantly positively correlated and 3544 genes signifi-

cantly negatively correlated with MELK expression (Figure 2A; top 100 genes, Pearson’s

1, and p-values for positive and negative correlations in Supplemental Tables S1 and S2,
respectively). Notably, among the top ten genes most positively correlated with MELK
expression were CEP55 (Pearson’s r = 0.806, p <1 X 10716, KIFC1 (Pearsons’s r = 0.794,

p<1lx 10716), TPX2 (Pearson’s r = 0.793, p<1lx 10~16), KIF4A (Pearson’s r = 0.778,
p <1 x 10716), NCAPG (Pearson’s r = 0.785, p < 1 x 1071%), HJURP (Pearson’s r = 0.783,
p <1 x 10719), TTK (Pearson’s r = 0.783, p < 1 x 10~16), CENPA (Pearson’s r = 0.774,
p <1 x 1071%), CKAP2L (Pearson’s r = 0.774, p < 1 x 107'%), and DLGAP5 (Pearson’s

r=0.774,p <1 x 1076, which have all been previously associated with tumor progres-
sion and metastasis (Figure 2B). CEP55 expression is correlated with metastasis in breast

cancer [19] and esophageal cancer [20]; KIFC1 is found in non-small-cell lung cancer [21]

and head and neck cancers [22]; TPX2 in prostate cancer [23] and non-small-cell lung

cancer [24]; KIF4A in colorectal cancer [25] and liver cancer [26]; NCAPG in non-small-cell

lung cancer [27]; HJURP in liver cancer [28] and pancreatic cancer [29]; TTK in endometrial

cancer [30] and breast cancer [31]; CENPA in clear renal cell carcinoma [32]; CKAP2L in

clear renal cell carcinoma [33]; and DLGAPS in bladder cancer [34]. These findings suggest

that MELK may contribute to poor clinical outcomes in breast cancer through its associ-

ation with genes involved in oncogenic pathways and may be associated with increased
metastatic potential.
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Figure 2. MELK and correlated gene expression are associated with tumorigenesis and metastasis
pathways. (A) Schema of pathway analysis. Using gene expression from the TCGA-BRCA breast
dataset, the top 100 genes positively and negatively correlated with MELK expression were used for
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overrepresentation analysis (ORA) in pathways from the Kyoto Encyclopedia of Genes and Genomes
(KEGG). (B) A bar chart depicting the top ten genes with expression most positively correlated with
MELK expression. (C) This resulted in six pathways from the positively correlated genes, shown in
this table. p-values reported are adjusted. (D) A chord diagram of the pathways (colored borders)
and the significantly correlated genes (grey borders) involved in each of the pathways. Genes are
ordered by decreasing Pearson’s r in the clockwise direction and pathways by decreasing pathway
significance in the clockwise direction. There were no significant pathways among the negatively
correlated genes.

To determine the biological processes associated with genes correlated with MELK
expression, we conducted overrepresentation analysis (ORA) of the top 100 positively
and 100 negatively correlated genes (Supplemental Tables 51 and S2). Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathway analysis revealed no significant enrichment
among negatively correlated genes. However, six pathways were significantly enriched
among positively correlated genes: cell cycle (p = 9.88 x 10~Y), progesterone-mediated
oocyte maturation (p = 2.22 X 107%), oocyte meiosis (p = 6.96 x 10~%), DNA replication
(p = 1.09 x 1073), mismatch repair (p = 6.00 x 1073), and p53 signaling pathway
(r = 896 x 1073) (Figure 2C,D). These pathways align with MELK’s established role
in cell cycle regulation, particularly at the G2/M transition, where it phosphorylates key
regulatory proteins. Furthermore, MELK's activation of FOXM1, a transcription factor that
drives the expression of mitotic regulatory proteins, is consistent with these findings [13].
These data suggest that MELK-associated genes contribute to critical cellular processes
involved in tumorigenesis, including cell division, DNA replication, and genomic stability.

Furthermore, correlated genes in three or more of these pathways include BUBI,
CCNB2, PLK1, and CCNB1. BUBI1 has been implicated as a stem cell regulator in breast can-
cer [35]. Additionally, CCNB2 has been linked to metastasis in nasopharyngeal cancer [36],
breast cancer [37], and non-small-cell lung cancer [38]; PLK1 in pancreatic cancer [39]
and melanoma [40]; and CCNBI in esophageal cancer [41]. So, here, we have shown that
genes co-expressed with MELK in breast cancer tumors have previously been implicated in
metastasis. Additionally, MELK has previously been associated with stem cell maintenance
in neural stem cells in mouse development and glioblastoma stem cells [42] and metastasis
in lung cancer [43], esophageal cancer [15], oral cancer [44], and even triple-negative breast
cancer [10]. Thus, we next decided to further investigate the impact of MELK on stem cell
properties and metastasis in breast cancer.

2.2. Knockdown or Inhibition of MELK Reduces Mammosphere Formation Efficiency and Growth

There is support for MELK's role in the maintenance of stem and progenitor cells
during development in mice [42] and zebrafish [45]. We used a mammosphere formation
assay to assess the role of MELK in stem cell properties in breast cancer. We evaluated
the role of MELK in breast cancer stem cell properties using a mammosphere formation
assay in MDA-MB-231 cells, a high-MELK-expressing cell line. Treatment with the MELK
inhibitor OTSSP167 significantly reduced mammosphere formation efficiency in cancer
stem cell populations (CD44+/CD24— and ALDH+) compared to untreated controls. A less
pronounced decrease in mammosphere formation was observed in the unsorted population,
which largely contains non-stem cells, upon OTSSP167 treatment, further supporting
MELK'’s involvement in maintaining cancer stem cell properties (Figure 3A, representative
images in Figure 3B) [46].
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Figure 3. MELK inhibition reduces mammosphere formation efficiency in high-MELK-expressing
MDA-MB-231 cells. (A) Treatment with the MELK inhibitor OTSSP167 significantly reduced mam-
mosphere formation efficiency in unsorted cells (n = 3, p = 0.0049), ALDH+ cancer stem cells (n = 3,
p =0.0008), and CD44+/CD24— cancer stem cells (n = 3, p = 0.00282). Each condition was normalized
to unsorted cells. (B) Representative images of mammospheres for each sorted group under control
and the treatment conditions at 10 x magnification. (C) Doxycycline (Dox)-inducible shRNA against
MELK (shMELK) in CD44+/CD24— MDA-MB-231 cells significantly reduced mammaosphere for-
mation efficiency (MFE) after induction (n =5, p = 2.4 x 10~°), with no significant change observed
in cells expressing control shRNA (shControl, n =5, p = 0.239). (D) Representative photographs of
mammospheres formed in shMELK and shControl conditions at 10 x magnification. Data represent
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the mean of independent experiments, with error bars indicating SEM. Statistical comparisons were
performed using a 2-sided Student’s ¢-test. ** p < 0.01, *** p <0.001, NS p > 0.05. Images were taken
at 10x magnification.

To corroborate the pharmacological findings, we performed shRNA-mediated knock-
down of MELK in CD44+/CD24— MDA-MB-231 cells. Stable cell lines expressing doxycy-
cline (dox)-inducible MELK shRNA (shMELK) or a dox-inducible non-targeting control
shRNA (shControl) were generated. Effective MELK knockdown in shMELK cells was
validated by western blot and qPCR, while no knockdown was observed in shControl cells
(Supplemental Figure S1A,B). Upon doxycycline induction, mammosphere formation effi-
ciency was reduced by approximately 50% in shMELK cells, with no significant change in
shControl cells (Figure 3C; representative images in Figure 3D). These results indicate that
MELK plays a critical role in tumor initiation and clonogenicity, a key stem cell property
observed in breast cancer.

2.3. Knockdown of MELK Reduces Invasion In Vitro and Metastasis In Vivo

Given MELK's reported association with metastasis in various cancers [10,15,43,44],
we investigated its role in invasion using the Fluoroblok Tumor Invasion Assay, modified
to measure absorbance from stained cells. Two siRNAs targeting MELK (siMELK#1 and
siMELK#2) were employed to knock down MELK expression in two high-MELK-expressing
TNBC cell lines, BT-549 and MDA-MB-231. Successful MELK knockdown was confirmed
via western blot (Supplemental Figure S2A). In BT-549 cells, both siMELK#1 and siMELK#2
reduced invasion efficiency by approximately 40% compared to the control siRNA (siCon)
(Figure 4A). Similarly, in MDA-MB-231 cells, MELK knockdown resulted in over a 50%
reduction in invasion efficiency (Figure 4B). Representative images of cells which invaded
the membrane in these experiments also illustrate the diminished invasion capacity in
MELK-knockdown cells compared to control, as we see fewer stained cells in the sSiMELK#1
and siMELK#2 treated cells than in the siCon control images (Figure 4C). These findings
demonstrate that MELK is a critical regulator of invasion in high-MELK-expressing breast
cancer cell lines.
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Figure 4. MELK knockdown reduces invasion efficiency in high-MELK-expressing cell lines BT-

MELK OE 1
230 MT7AN

549 and MDA-MB-231, while MELK overexpression increases invasion efficiency in low-MELK-
expressing T47D cells. (A) siRNA-mediated MELK knockdown significantly reduced invasion in
BT-549 cells (n = 3; p = 0.0011 for siMELK#1, p = 0.0007 for siMELK#2). (B) Similar reductions
in invasion were observed in MDA-MB-231 cells (n = 3; p = 0.0026 for siMELK#1, p = 0.0023 for
siMELK#2). (C) Representative images of cells which successfully invaded the membrane for both
cell lines. Images were taken at 40 x magnification. (D) MELK overexpression in T47D cells (MELK
OE 1 and MELK OE 2) significantly increased invasion efficiency compared to LacZ controls (Control
1 and Control 2; n = 4; p = 0.0002 and p = 0.0135 for Control 1/MELK OE 1 and Control 2/MELK OE 2,
respectively). (E) Representative images of invaded cells for T47D control and MELK-overexpressing
clones. Images were taken at 4 x magnification. Data represent the mean of independent experiments
with error bars indicating SEM. Statistical comparisons were performed using (A,B) one-way ANOVA
with Dunnetts Multiple Comparison Test and (D) 2-sided Student’s t-test. * p < 0.05, ** p < 0.01,
*#* p <0.001. OE: Overexpression.

2.4. Overexpression of MELK Increases Invasion Efficiency In Vitro

To determine whether overexpressing MELK in a cell line with low endogenous MELK
expression could enhance invasive capacity, we generated T47D cells that stably overexpress
MELK through lentiviral transduction of MELK-GFP. Successful MELK overexpression was
confirmed via western blot analysis (Supplemental Figure S2B). Compared to LacZ control
cells (Control 1 and Control 2), two independent MELK-overexpressing clones (MELK OE 1
and MELK OE 2) exhibited a more than twofold increase in invasive capacity, as evidenced
by the number of cells that traversed the membrane (fewer than 50 cells for both controls
versus over 100 cells for both overexpression clones; Figure 4D). Representative images of
cells which invaded the membrane also show this enhanced invasion capacity with MELK
overexpression in a low-MELK-expressing cell line, as evidenced by the increased number
of fluorescent cells in the MELK OE 1 and MELK OE 2 conditions relative to the Control 1
and Control 2 conditions (Figure 4E). These findings, in conjunction with the knockdown
experiments, provide evidence of MELK’s role in invasiveness in breast cancer.

2.5. Inhibition of MELK Reduces Migration In Vitro

To evaluate the impact of MELK inhibition on cellular migration, we performed
scratch-wound assays in two high-MELK-expressing cell lines, MDA-MB-231 and BT-549,
treated with the MELK inhibitor OTSSP167 at concentrations of 100 nM and 1 uM. In
MDA-MB-231 cells, treatment with OTSSP167 significantly impaired wound closure at both
concentrations compared to the control (p < 0.0001; Figure 5A, representative images in
Figure 5C). A dose-dependent reduction in migration was also evident, with significant
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differences between 100 nM and 1 uM treatments (p = 0.0005). Similarly, in BT-549 cells,
both concentrations of OTSSP167 significantly reduced wound closure compared to the
DMSO control (1 uL/mL) (p < 0.0001 for both concentrations; Figure 5B, representative
images in Figure 5C). Furthermore, a dose-dependent effect was observed, with significant
differences in wound closure between 100 nM and 1 uM OTSSP167 treatments (p < 0.0001).
Collectively, these results demonstrate that MELK inhibition impairs migration efficiency
in vitro in high-MELK-expressing breast cancer cell lines.
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Figure 5. MELK inhibition reduces migration in high-MELK-expressing cell lines MDA-MB-231
and BT-549. (A) Wound width over time in MDA-MB-231 cells treated with DMSO (control) or the
MELK inhibitor OTSSP-167 at 100 nM and 1 uM (n = 12). (B) Wound width over time in BT-549
cells under the same treatment conditions (n = 12). (C) Representative images of wound closure
at selected time points, including masks generated by the Incucyte system for quantification at
10x magnification (MDA-MB-231, left; BT-549 right). Data demonstrate the dose-dependent effect of
OTSSP-167 on migration in high-MELK-expressing cells. Error bars represent standard deviation.
Statistical comparisons were performed using a one-way repeated-measures ANOVA with post-hoc
pairwise t-tests to assess differences between each treatment group. *** p < 0.001.
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2.6. Overexpression of MELK Increases Metastasis In Vivo

To assess whether MELK overexpression promotes metastasis in vivo, we utilized
the chorioallantoic membrane (CAM) assay (Figure 6A). Stable MELK-overexpressing cell
lines were generated using two low-MELK-expressing cell lines, MCF7 and T47D (MELK
overexpression confirmed by qRT-PCR in Supplemental Figure S3). In MCF7 cells, MELK
overexpression significantly increased metastatic cell counts in the liver, with a mean of
116.07 metastatic cells compared to 33.70 in the control—a 3.5-fold increase. Similarly, in the
lungs, the mean number of metastatic cells rose from 100.63 in the control group to 212.55
in the MELK-overexpressing group, more than doubling the metastasis rate and number
(Figure 6B). Comparable results were observed in T47D cells, where MELK overexpression
nearly doubled the mean metastatic cell count in the liver (8.55 to 15.89) and nearly tripled
the count in the lungs (4.69 to 12.79; Figure 6C). Collectively, these results from two distinct
cell line models strongly indicate that MELK overexpression enhances metastatic potential
in breast cancer.
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Figure 6. MELK overexpression in low-MELK-expression cell lines, MCF7 and T47D, increases
metastasis in the chorioallantoic membrane (CAM) assay. (A) Schematic of the CAM assay and
experimental design. (B) MELK overexpression (OE) in MCF7 cells resulted in a significant increase
in metastatic cells in the liver (n = 10, p < 0.0001) and the lung (n = 10, p < 0.0001). (C) Similarly, MELK
overexpression in T47D cells resulted in a significant increase in metastatic cells in the liver (n = 10,
p <0.0001) and the lung (n = 10, p < 0.0001). Data represent 10 independent experiments, and error
bars represent SEM. A 2-sided Student’s t-test was used for comparison. *** p < 0.001.
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3. Discussion

Our study demonstrates that maternal embryonic leucine zipper kinase (MELK) plays
a critical role in the aggressive behavior of triple-negative breast cancer (TNBC). High MELK
expression correlates with worse overall survival, recurrence-free survival, and distant
metastasis-free survival (Figure 1), aligning with previous studies that have identified
MELK as a negative prognostic factor in TNBC and other cancers. MELK is also co-
expressed with other genes which have been implicated in metastasis in a publicly available
dataset (Figure 2). Using both genetic (shRNA) and pharmacologic (OTSSP167) knockdown
of MELK in high-MELK-expressing cell lines, we showed that MELK inhibition reduces
mammosphere formation efficiency (Figure 3). Reducing MELK expression in these cell
lines also reduced invasion (Figure 4) and migration efficiency (Figure 5) in vitro. We
also showed that overexpression of MELK in a low-MELK-expressing cell line increased
invasion efficiency in vitro (Figure 4), and in an in vivo system, MELK overexpression
resulted in increased metastases in the liver and lungs (Figure 6). Altogether, these data
demonstrate that MELK inhibition is a potentially effective strategy for reducing metastasis
in TNBC, which may ultimately lead to better patient prognoses.

Maternal embryonic leucine zipper kinase (MELK) has emerged as a potential driver
of progression and metastasis of various cancers, including triple-negative breast cancer
(TNBC) [47]. MELK is a serine/threonine kinase that is overexpressed in several cancer
types and is associated with poor prognosis and aggressive tumor behavior [9-15,43,44,48-52].
There is evidence in the literature that this overexpression in TNBC tumors is caused by
either copy number gains in this subtype [53] or mutant p53 activity [54]. The reexpression
of MELK in TNBC, as opposed to normal tissues, is hypothesized to be driven by these
genetic changes that reactivate embryonic pathways involved in cell cycle regulation and
survival, crucial for cancer cell proliferation and resistance to apoptosis. Furthermore,
mutations in p53 have been shown to induce increased expression of MELK by release
of wild type p53 suppression of FOXM1 [54]. As the majority of TNBC tumors harbor
mutations in p53 (compared to ER+ BC and normal tissues), this may explain the increased
expression noted in TNBC [55]. In cancer, MELK is involved in regulating cell cycle
progression, apoptosis, and proliferation. Specifically, MELK has been shown to promote
tumorigenesis by phosphorylating and activating key proteins involved in cell division and
survival, such as FOXM1, which drives the expression of genes critical for mitosis [13,14,56].
MELK has also been shown to influence radiation and chemotherapy response and is
an important determiner of intrinsic breast cancer subtype [17,57-59]. Previous studies
have shown that MELK expression correlates with increased metastatic potential and poor
outcomes in cancers such as lung, esophageal, and oral squamous cell carcinoma [15,43,44].
The kinase facilitates metastasis by enhancing cell migration and invasion, at least in part,
through the modulation of pathways such as NF-«B, which is known to promote metastasis
and epithelial-mesenchymal transition (EMT) [10,15].

While our study offers significant insights into MELK’s role in TNBC, there are impor-
tant limitations to consider. First, while our study utilizes both genetic and pharmacological
approaches to inhibit MELK, the potential off-target effects of these methods cannot be
entirely ruled out. Specifically, the use of sShARNA and pharmacological inhibitors such
as OTSSP167, which may have additional targets beyond MELK, could confound the in-
terpretation of the results. Second, although the CAM assay provides a physiologically
relevant in vivo model, it does not fully recapitulate the tumor microenvironment of human
breast cancer, particularly immune and stromal interactions. Expanding these findings into
patient-derived xenograft (PDX) models and incorporating immune-competent systems
will enhance translational relevance. Additionally, TNBC is a highly heterogeneous dis-
ease, and the role of MELK across different TNBC subtypes warrants further investigation.
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Comprehensive genomic and proteomic analyses of primary patient samples may identify
additional pathways or co-regulated genes that contribute to MELK-driven metastasis.
Moreover, the potential interaction of MELK with other therapeutic targets, such as FOXM1
and the NF-«B pathway, should be explored to identify combinatorial treatment strategies.

In conclusion, our findings underscore the potential of MELK as a therapeutic target in
TNBC. The reduction in tumorigenic and metastatic properties following MELK inhibition
supports the rationale for developing MELK-targeted therapies. While pharmacologic
inhibitors like OTSSP167 have shown efficacy in preclinical models, their off-target effects
must be carefully addressed in future studies. The development of MELK-specific inhibitors
with improved selectivity and reduced toxicity could provide a more effective therapeutic
strategy for patients with TNBC. This, coupled with more comprehensive mechanistic
studies, will be essential to translate these findings into clinical benefits for patients with TNBC.

4. Materials and Methods
4.1. Cell Culture

The basal-like BC cell lines MDA-MB-231 and BT-549 were grown from frozen samples
(American Type Culture Collection [ATCC]). MDA-MB-231 cells were grown in DMEM
(Gibco, Fisher Scientific, Waltham, MA USA) supplemented with 10% FBS (Gibco, Fisher
Scientific) and 1% penicillin/streptomycin (Gibco, Fisher Scientific). BT-549 cells were
grown in RPMI 1640 (Gibco, Fisher Scientific) with 10% FBS (Gibco, Fisher Scientific) and
1% penicillin/streptomycin (Gibco, Fisher Scientific). All cell lines were grown in a 5% CO,
incubator. Cells were passaged at approximately 70% confluence. Cells were tested for
mycoplasma routinely (MycoAlert, Lonza, Basel, Switzerland).

4.2. Stable Cell Line Generation, Transfections, siRNAs, and Plasmids

For transfection, two Eppendorf tubes were labeled for each sample and one control
set: one tube for Lipofectamine® reagent mixture and the other for DNA and P3000T™.
A total of 125 puL of Opti-MEM Reduced Serum Medium was added to each tube. Each
transfection required 5 pL of Lipofectamine® 3000 reagent, added to the reagent tube. For
DNA, 2.5 ug was added to the DNA tube along with 5 uL. of P3000™ reagent. The DNA
and P3000™ mixture was transferred to the corresponding reagent tube and was incubated
at room temperature for at least 5 min. During incubation, the current media was removed
from each well in the 6-well plate, and 1.75 mL of antibiotic-free media was added to each
well. After incubation, the transfection mixture was mixed again and 250 uL was added
to each designated well in droplets, followed by gentle swirling to mix. The plate was
returned to the incubator. Cells were replaced with complete media after 24 h.

For knockdown experiments, cells were seeded in 6-well plates and transfected with
100nM ON-TARGET plus SMARTpool siRNA (ThemoScientific) targeting MELK or non-
targeting control (Non-targeting Pool, catalogue no. D-001810-10-50, using oligofectamine
(Invitrogen, Waltham, MA USA) according to the manufacturer’s instructions). The fol-
lowing are the catalogue numbers and the siRNA sequences: ON-TARGET plus Human
MELK SMARTpool, catalogue no. J-004029-06, J]-004029-09, set# LQ-004029-00-0002, target
sequences, #1 GA and #4 GG. Cells were trypsinized and seeded 24 h post-transfection
and used in clonogenic survival assays as well as for RNA extractions to determine the
knockdown efficiency.

shRNA construct and stable clone generation: The pTRIPZ lentiviral system with
MELK inducible shRNA transfection starter kit was purchased from ThermoScientific using
catalog #RHS4696-200703132 and cat# RHS4696-200691582 for non-template control and
shMELK. Stable cell lines were generated using lentiviral transduction. Lentiviral particles
with shMELK or non-targeting shControl were packaged and culture medium provided
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at the vector core facility of University Michigan. Stable cell lines were selected using
complete medium containing puromycin at 2 ug/mL for one-week selection. Clones were
selected and screened for both RFP and MELK expression changes and were used as pools
and as selected stable clones in all in vitro and in vivo experiments.

4.3. Flow Cytometry

Samples for flow cytometry were prepared using standard protocols. Cells (1 x 10°)
were trypsinized, filtered, and resuspended in PBS with 3% FBS. For staining, cells were
allocated into FACS tubes labeled “Stain”, “DEAB”, and “Isotype”. Compensation controls
were prepared in tubes labeled “Unstained”, “ALDH”, “PE-Cy7”, “APC”, and “DAPI”.
Staining master mixes were prepared using FITC-Aldefluor (1 uL/sample), PE-Cy7-CD24
(1 uL/sample), APC-CD44 (20 pL/sample), and DAPI (0.2 pL/sample). Corresponding
isotype controls included PE-Cy7-Isotype (4 pL/sample) and APC-Isotype (2 uL/sample).

Cells were incubated with staining or isotype mixes at 37 °C for 30-60 min, resuspend-
ing every 15 min. Following incubation, cells were washed, centrifuged at 4 °C for 5 min at
300-350 g, and resuspended in Aldefluor staining buffer or PBS with 3% FBS. Samples were
analyzed immediately and kept on ice until analysis. Compensation tubes were prepared
similarly, with reagents specific to the respective fluorophores.

4.4. Western Blot Analysis

For protein isolation, cells from tissue culture lines were washed once with ice-cold
phosphate-buffered saline (PBS) and lysed in a protein lysis buffer containing 50 mM
HEPES (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 10% glycerol, 100 mM NaF,
Complete Mini protease inhibitor cocktail (Roche, Basel, Switzerland), and phosphatase
inhibitor cocktails I and II (Sigma-Aldrich, St. Louis, MO, USA). Protein concentration was
measured using the BCA Protein Assay (Pierce Biotechnology, Rockford, IL, USA). For
western blot analysis, 30 ug of total protein was resolved on a 10% SDS-PAGE gel and trans-
ferred to a nitrocellulose membrane (Amersham Biosciences, Buckinghamshire, UK). The
membrane was blocked, incubated with primary antibodies, washed with TBST, then incu-
bated with horseradish peroxidase-conjugated secondary antibodies. Antigen—antibody
complexes were detected using the ECL or ECL Plus chemiluminescent system (Amersham
Biosciences). Primary antibodies for MELK (Sigma Prestige, Catalog #HHPA017214), cleaved
PARP (Cell Signaling, Catalog #5625S, Danvers, MA, USA), and total PARP (Cell Signaling,
Catalog #9542S) were used. Anti-rabbit secondary antibodies were obtained from Sigma.
For protein isolation from human tumor samples, the same protocol was followed with
an additional homogenization step. Tumor samples were homogenized using a 7 mm
generator and a rotator—stator homogenizer (ProScientific, Oxford, CT, USA) in protein
lysis buffer, and all isolation procedures were performed on ice.

4.5. gPCR

Total RNA was isolated using TRIzol (Invitrogen) and RNeasy kit (Qiagen, Hilden,
Germany) according to manufacturers’ instruction. Total RNA was reverse transcribed
into cDNA using SuperScript Il and primers (Invitrogen). Quantitative PCR (qPCR) was
performed using SYBR Green Master Mix (Applied Biosystems, Waltham, MA USA) on
an Applied Biosystems 7900HT Real-Time System. The relative quantity of the target
gene was computed for each sample using the AACt method by comparing the mean
Ct of the gene to the mean Ct of the housekeeping gene GAPDH. All the primers were
obtained from Integrated DNA Technologies (IDT). Results were reported as average
expression + standard error of the mean. Primer sequences were as follows: MELK forward
#1: 5' ->3' GCT GCA AGG TAT AAT TGA TGGA MELK reverse #1: 5 -> 3' CAG TAA CAT
AAT GAC AGA TGG GC.
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4.6. Mammosphere Formation Assay

For pharmacologic inhibition experiments, MDA-MB-231 cells were treated with
100 nM OTSSP 167. For the shRNA knockdown experiments, MDA-MB-231 cells were trans-
fected with either control non-targeting shRNA or MELK-targeting shRNA. For each ex-
periment, non-stem (CD44+/CD24—/ALDH—) and stem-like (CD44—/CD24—/ALDH+)
cells were subsetted by FACS using anti-CD-24-PE and anti-CD44-fluorescein isothio-
cyanate (FITC) monoclonal antibodies. The number of viable cells per ml was calculated
using trypan blue. Cells were resuspended in 0.5 mL of complete mammosphere me-
dia in each well of a precoated 24-well ultra-low adherent plate with a seeding density
of 120-150 cells/per well. For the shRNA knockdown experiments, there were both
doxycycline-positive and doxycycline-negative plates. Cells were seeded on ultra-low-
attachment 96-well plates at 37 °C and 5% CO; for 5-10 days (depending on the cell line
and the size of mammospheres) without disturbing the plates, particularly during the
growth phase (the first 5 days). After the culture period, the mammospheres were counted
under a light microscope at 10 x magnification. Mammosphere-forming efficiency (MFE%)
was calculated using the following equation: MFE% = (# of mammospheres per well)/ (# of
cells seeded per well) x 100.

4.7. Modified Invasion Assay

Diluted Matrigel (1-2 mg/mL in serum-free media) was added to 24-well transwell
inserts (100 uL/well) and gelled at 37 °C for 5 h. BT-549 or MDA-MB-231 cells were
harvested 48 h post-siRNA transfection, washed in 1% FBS media, and resuspended at
1-2 x 10° cells/mL. Cell suspensions (100 uL) were seeded onto the Matrigel layer.

The lower chamber was filled with 600 pL of media containing 10% FBS, and transwells
were incubated at 37 °C for 24-48 h. Inserts were then washed, fixed in 70% ethanol, stained
with 0.09% crystal violet, and washed. Stained cells were dissolved in 10% acetic acid, and
absorbance was measured at 560 nm to assess invasion. Images were taken at 40 x magnification.

4.8. Invasion Assay

Matrigel (1-2 mg/mL in serum-free media) was added to the upper chambers of
24-well transwell inserts (100 uL/well) and gelled at 37 °C for 5 h. Inserts were placed
into companion plates containing chemoattractant media. T47D control and T47D MELK-
GFP-overexpressing cells (4 x 10* cells in 100 pL. complete culture media) were seeded
into the upper chambers. The lower chambers were filled with complete culture media
as a chemoattractant. Cells were fixed with 70% ethanol before doubling time. Invading
cells were quantified using a fluorescence microscope at 4 x magnification after 24 h, and
invasion efficiency was calculated as follows: % Invasion = (Number of cells in lower
chamber/Total number of cells seeded in the upper chamber) x 100.

4.9. Scratch-Wound Assay

Cells (50,000/well) were seeded in ImageLock 96-well plates (Sartorius, Singapore)
and incubated overnight at 5% CO,. Wounds were created using the WoundMaker Tool
(Sartorius). For MDA-MB-231 cells, wells were washed twice with dPBS to remove de-
tached cells, while washing was omitted for BT-549 cells to preserve wound clarity. Media
containing 1 pL/mL DMSO (control), OTSSP167 at 100 nM, or OTSSP167 at 1 uM was
added. Plates were scanned every 3 h in an Incucyte system (Sartorius) until control wells
reached confluence (48 h for MDA-MB-231; 72 h for BT-549).
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4.10. Chorioallantoic Membrane (CAM) Assay

The CAM assay was performed as previously described [60]. Fertilized chicken eggs
were incubated at 37.5 °C and 65% humidity for 6 days. Cell suspensions (25 pL containing
1.5 x 10° T47D LacZ control or T47D MELK-overexpressing cells) were grafted near the
allantoid vein bifurcation without touching the CAM. Eggs were incubated for 18 days, after
which tumors were excised, weighed, and the embryonic liver and lungs were harvested
for human cell detection via quantitative human Alu-specific PCR. DNA quantification was
performed using fluorogenic TagMan qPCR probes and DNA copy number were quantified
as described [61].

4.11. Drug Information
OTSSP167 (HY-15512A) was purchased from MedChemExpress (Princeton, NJ, USA).

4.12. Statistical Analyses

Statistical analyses were performed in R (version 4.2.2), except the scratch-wound
assay, which was conducted in Prism (https://www.graphpad.com/features, accessed on
20 February 2025). A significance level threshold of p < 0.05 was used. Statistical tests and
sample sizes for each assay are specified in the figure captions. Statistical analyses were
derived from a sample size of at least three unless otherwise indicated.

4.13. Kaplan—Meier Analysis

Survival analyses for overall survival (OS), recurrence-free survival (RFS), and distant
metastasis-free survival (DMFS) were performed using the Kaplan—Meier Plotter database.
This dataset is comprised of 7830 unique tumor samples from 55 independent datasets.
Clinical characteristics for this dataset, which have been described, include receptor status,
grade, lymph node status, molecular subtype distribution, applied treatment, and length
of follow-up for RFS [18]. Breast cancer patient cohorts were stratified into high- and
low-MELK expression groups based on median MELK expression levels. The gene symbol
“MELK” was used to query the database, and the survival metrics OS, RFS, and DMFS
were selected for analysis. Results were visualized as Kaplan-Meier survival curves.

4.14. Transcriptomics Analysis

RNA-seq data for samples from primary tumors were collected from the TCGA-BRCA
database, https:/ /portal.gdc.cancer.gov/projects/ TCGA-BRCA (accessed on 20 June 2023)
using TCGADbiolinks (version 2.26.0) [62]. The TCGA workflow for transcriptomic analysis
was used for gene expression analysis [63]. Data were normalized using dataNorm and
low-expression genes were filtered using dataFilt using the “quantile” with a cutoff of
0.25. To identify genes whose expression was correlated with MELK, the Hmisc function
rcorr was used, with default parameters. A cutoff of p < 0.05 was used to determine
significantly correlated genes. This was followed by overrepresentation analysis on the top
100 positively correlated and top 100 negatively correlated genes with the R package fgsea
(version 1.24.0), using an adjusted p-value cutoff of p < 0.05 [64].
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The following abbreviations are used in this manuscript:

TNBC  Triple-negative breast cancer

MELK Maternal embryonic leucine zipper kinase
BCSC  Breast cancer stem cell

(OF] Overall survival

RFS Recurrence-free survival

DMEFS Distant metastasis-free survival

KEGG Kyoto Encyclopedia of Genes and Genomes
ORA Overrepresentation Analysis

MFE Mammosphere Formation Efficiency

OE Overexpression

CAM Chorioallantoic Membrane
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