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ABSTRACT

Genomic and epigenomic features are captured at
a genome-wide level by using high-throughput se-
quencing (HTS) technologies. Peak calling delin-
eates features identified in HTS experiments, such
as open chromatin regions and transcription factor
binding sites, by comparing the observed read distri-
butions to a random expectation. Since its introduc-
tion, F-Seq has been widely used and shown to be the
most sensitive and accurate peak caller for DNase I
hypersensitive site (DNase-seq) data. However, the
first release (F-Seq1) has two key limitations: lack of
support for user-input control datasets, and poor test
statistic reporting. These constrain its ability to cap-
ture systematic and experimental biases inherent to
the background distributions in peak prediction, and
to subsequently rank predicted peaks by confidence.
To address these limitations, we present F-Seq2,
which combines kernel density estimation and a dy-
namic ‘continuous’ Poisson test to account for local
biases and accurately rank candidate peaks. The out-
put of F-Seq2 is suitable for irreproducible discovery
rate analysis as test statistics are calculated for in-
dividual candidate summits, allowing direct compari-
son of predictions across replicates. These improve-
ments significantly boost the performance of F-Seq2
for ATAC-seq and ChIP-seq datasets, outperforming
competing peak callers used by the ENCODE Con-
sortium in terms of precision and recall.

INTRODUCTION

High-throughput sequencing (HTS) is a central technology
in deciphering genomic and epigenomic landscapes. Assays
for detecting genome-wide chromatin accessibility (1–3),
transcription factor (TF) binding (4) and histone modifica-
tions (5) are among the most commonly used methods. The
short read sequences produced by these assays are usually
filtered and mapped back to a reference genome, then accu-

mulated and piled up in genomic regions. The enrichment
(e.g. counts) of mapped reads can be abstractly viewed as a
digital signal of relevant biological events varying along the
genome. The genome-wide enrichment signal can be further
processed with a peak-calling program, or peak caller, to
find the arguments of local maxima (argmax), representing
discrete loci with statistically significant enrichment over
background for the relevant biological event. For example,
individual TF-binding sites in a ChIP-seq experiment.

We introduced F-Seq as a general peak caller for DNase-
seq and ChIP-seq in 2008 (6). Unlike other recent methods
(7,8), F-seq calls peaks in HTS signals that are the proba-
bilistic estimates of the genome-wide short read density at
single-nucleotide resolution reconstructed by a kernel den-
sity estimator (KDE) (9,10). KDE-based reconstructed sig-
nal is smoother and more accurate than histogram-based
methods (e.g. sliding window), but still interpretable and
useful for visualization as the estimate is proportional to
the probability of finding a read at a given base pair (11).
A Gaussian kernel with a chosen bandwidth is centered at
each read and kernels are summed up to obtain the den-
sity estimate. Peak regions are then called if the signal is
higher than the threshold calculated from a simulated back-
ground model. F-Seq has been widely used in the ENCODE
project (12) and beyond, which is shown to be more accurate
and sensitive than competing peak callers for DNase-seq
data (13). However, F-Seq lacks native support for a sep-
arate control dataset. Consequently, F-Seq cannot capture
or eliminate local biases affecting read distribution along
the genome, such as copy number variation, read mappa-
bility and local chromatin structure (7). This limits the per-
formance of F-Seq especially on ChIP-seq data since the
majority of ChIP-seq experiments have corresponding con-
trol data that contain unique information for accurate peak
calling (14). In addition, F-Seq does not report test statis-
tics (e.g. P-value or q-value) apart from the signal value at
each position.

To address these shortcomings, we have developed F-Seq
version 2 (F-Seq2), a complete rewrite of the original F-Seq
in Python. F-Seq2 implements a dynamic parameter to con-
duct local statistical analysis with an underlying ‘continu-
ous’ Poisson distribution that is approximated by logarith-

*To whom correspondence should be addressed. Tel: +1 734 763 7382; Email: apboyle@umich.edu

C© The Author(s) 2021. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/3/1/lqab012/6148839 by U

niversity of M
ichigan Law

 Library user on 09 M
arch 2021

http://orcid.org/0000-0003-3124-0958
http://orcid.org/0000-0002-2081-1105


2 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 1

mic interpolation of P-values. This allows a Poisson test for
continuous signal values (i.e. amplitude) at each genomic
position to the local background distribution. By combin-
ing the power of the local test and the KDE, which model
the read probability distribution with statistical rigor, we
robustly account for local biases and solve ties that occur
when ranking candidate summits, making results suitable
for irreproducible discovery rate (IDR) analysis (15). We
compared F-Seq2 with four peak callers used by the EN-
CODE Consortium (12) on simulated and real ChIP-seq
and ATAC-seq datasets, demonstrating performance gains
arising from the joint effect of KDE and the local test, es-
pecially in the absence of control data.

MATERIALS AND METHODS

Density profiles and peak calling

Density profiles for HTS reads at any base pair position x
of the genome are defined as

ρ̂ (x) = C
b

n∑
i = 1

K
(

x − xi

b

)

where K (x) = exp(− x2
2 )√

2π
is a Gaussian kernel density func-

tion, and b is the bandwidth parameter controlling the
smoothness of the estimation. In contrast to the original
KDE, F-Seq2 density profiles represent unnormalized esti-
mates (i.e. not normalized to the total read count) for com-
putational convenience of following statistical analysis. C is
a scaling constant so that the sum at any given position is
limited to the number of proximal sample points. For ex-
periments including a control dataset, scaling between con-
trol and treatment datasets was necessary to account for
different sequencing depths. The total control read count
was linearly scaled to be equal to the total treatment read
count at the individual chromosome level as the ratios of to-
tal reads fluctuated between different chromosomes. The
reconstructed signal by KDE was treated as a digital sig-
nal emitted on a chromosome. Argmax of the signal, which
are the positions of local maxima in the estimated density
function, were established by comparing neighboring val-
ues. Only a subset of argmax were retained as the candi-
date summits for statistical testing to reduce potential false
positives. Candidates were selected by their local maxima
properties; we specified the minimum height and promi-
nence of the local maxima for candidates as the simulated
background threshold and the minimum distances between
adjacent local maxima as the estimated fragment size. Es-
timation of the fragment size for ChIP-seq data and the
simulated background threshold for defining and selecting
candidate summits and delineating final peak regions were
implemented the same between F-Seq2 in Python and the
original F-Seq in Java.

We adopted and modified the dynamic testing idea in-
troduced by MACS2 (7) to assign each candidate summit
a statistical enrichment value related to a background dis-
tribution. Rather than using a constant background esti-
mation for all candidates, a local background distribution
was estimated for each candidate, providing a more accu-
rate method to calculate enrichment P-values due to the lo-

cal fluctuations of read enrichment distributions. The Pois-
son distribution (characterized by λ) was used to model
the number of reads (or signal value) from a genomic re-
gion as this has been proven to be more mathematically
powerful compared to Binomial distribution in peak call-
ing (16). Specifically, λ for a summit is defined as λlocal =
max(λBG, [λp1, λ1k], λ5k, λ10k), where λp1 is the maximum
signal value for one pseudo-read, λBG is the estimate of the
individual chromosome background, and λx is the estimate
of a x bp window centered at the summit. All estimates are
calculated in the control dataset where available; otherwise,
estimates were only calculated in the treatment dataset, and
regions in the square brackets of formula were excluded to
alleviate the background estimation boost by the summit
signal value.

Since the underlying Poisson distribution of the statis-
tical test is a discrete distribution while the test sample
(i.e. the signal value) is continuous, many ties in test statis-
tics P-value calculated by survival function were observed.
Supposing X ∼ Pois(λ), the Poisson survival function is

then defined as S (X = x; λ) = 1 −
x∑

i = 0

λi e−λ

i ! . Ties often

occurred when the sequencing data had a low signal-to-
noise ratio and KDE estimated signal values were close to
each other (i.e. between two integers), such as S (2.1, λ) =
S (2.9, λ) = S(2, λ). We interpolated the P-value in the log-
arithmic space of the survival function to allow for contin-
uous input, and break any ties that occurred. The interpo-
lated P-value in logarithmic space is calculated as

log10(Ŝ(Y = y; λ)) = (y − �y�) · log10

(
S (�y� ; λ)
S (�y� ; λ)

)

+log10 (S (�y� ; λ))

where Y is a continuous random variable, �y� is the floor
function and �y� is the ceiling function. The precision
gained by this interpolation improved the rankings of sum-
mits compared to the rankings calculated using discrete val-
ues. The interpolation bridges KDE and the dynamic Pois-
son testing to combine their power. Multi-test correction
was conducted with the Benjamini–Hochberg approach
(17) to calculate q-values (more precisely, false discovery
rate adjusted P-values) from the interpolated P-values.

Benchmarking with selected peak callers

Four peak callers and F-Seq2 were selected to benchmark
our improved method on 100 simulated HTS datasets, 3 real
ChIP-seq datasets and 1 ATAC-seq dataset. The compari-
son methods, which are routinely utilized by the ENCODE
Consortium (12), included Model-based Analysis for ChIP-
Seq version 2 (MACS2) (7), SPP (18), MUltiScale enrIch-
ment Calling for ChIP-Seq (MUSIC) (8) and Genome wide
Event finding and Motif discovery (GEM) (19). Hundred
treatment datasets and their paired control samples were
simulated to closely approximate real ChIP-seq datasets
(16), allowing for the evaluation of the peak callers under
different scenarios where the ground truth is known. Real
ChIP-seq datasets for three different TFs tested in three dif-
ferent cell lines were obtained from ENCODE (12). As the
ground truth is unknown in real datasets, one common ap-
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proach is to use the presence of a matched TF-binding mo-
tif to indicate true positive peak predictions. Motifs were
obtained from the JASPAR database (20) irrespective of
cell line specificity, and used for the three real ChIP-seq
datasets. Similarly, the union set of conservative IDR peaks
from 117 independent ENCODE TF ChIP-seq experiments
were used as the ‘ground truth’ for ATAC-seq benchmark-
ing (12). Raw ATAC-seq bam files were downloaded from
Buenrostro et al. (2) (see availability for data accession num-
bers).

Performance for all peak callers was evaluated across
a range of significance thresholds representing a different
number of top ranked peaks. The main evaluation metric
was the F-score defined as

Fβ = (
1 + β2) · precision · recall(

β2 · precision
) + recall

precision = tp
tp + f p

recall = tp
tp + f n

When β = 1, we refer to it as F-score, or more specifi-
cally, F1-score; when β = 0.5, we refer to it as F0.5-score.
tp is the number of true positives, f p is the number of false
positives, and f n is the number of false negatives. A higher
F-score indicates a more balanced performance in terms of
precision and recall. All peak callers were run with recom-
mended settings and the least stringent thresholds (i.e. set
P-value or q-value threshold to 1 or fold enrichment thresh-
old to 0; see Availability for parameters settings).

Evaluation for simulated data

Peak calling results are typically not directly comparable as
they possess different peak widths and estimated P-values
or q-values that are generated from different statistical tests.
To address this issue, all tools were first run with the least
stringent threshold to obtain an extensive list of peaks on
each simulated dataset for each tool. All peaks were limited
to a 200 bp window centered at the peak summit or peak
centers, depending on available dataset information. Oper-
ating characteristics can be evaluated by varying the thresh-
old to obtain the same top number of peaks from each tool,
where peaks are ranked by individual significance measure-
ments. F-score was used as the evaluation metric, which is
the harmonic mean of precision and recall. Specifically in
the simulation evaluation, tp was defined as the number
of predicted peaks that overlap with ground truth peaks.
Precisionsimulation was defined as the fraction of tp in all pre-
dictions, and recallsimulation as the fraction of tp in all ground
truth peaks. The mean and 95% confidence intervals across
100 peak calling results were estimated by generalized ad-
ditive models (GAMs) (21) for each peak caller. A linear
GAM was fit to the results for regression analysis. Using
the fitted model to predict on the varying threshold gen-
erated the mean curve and 95% prediction intervals, which
was defined as 95% confidence intervals for each peak caller.
Since the lengths of the operating characteristics curves var-
ied due to the different maximum number of peaks called by

each peak caller, and different P-values or q-values sensi-
tivities responding to the varying threshold, the area under
the curve statistics used to summarize the curve were not
directly comparable. We then used the highest F-score and
the overall trend of the curve for peak caller evaluation. The
higher the overall curve, the larger the area under the curve,
the more balanced and optimal the performance of a peak
caller is in terms of precision and recall.

Evaluation for ATAC-seq data

Evaluation of F-Seq2 and MACS2 used the union set of
conservative IDR peaks from 117 TF ChIP-seq datasets as
the ‘ground truth’. All IDR peaks were in the GM12878
cell line to be comparable to the ATAC-seq dataset. Each
tool was run with the least stringent threshold and two main
modes: single-end (SE) and paired-end (PE) mode. Paired-
end mode has the advantage of knowing the exact fragment
length, which is useful when filtering out fragments whose
length falls within a certain range to avoid peak calls on nu-
cleosome centers (2). Operating characteristic curves were
plotted similarly as described in the evaluation for simu-
lation data by varying the respective thresholds. The main
difference was the evaluation metric was changed to F0.5-
score along with new definitions for true positives, precision
and recall. We used F0.5-score to put more emphasis on pre-
cision versus recall due to the incompleteness of the ‘ground
truth’. tp was redefined as the number of base pairs (bp) of
the predicted peaks that overlap with ground truth peaks,
Precisionatac as the fraction of correctly predicted base pairs
in all predictions, and recallatac as the fraction of correctly
predicted base pairs in all ground truth peaks. New defi-
nitions were required as ATAC-seq peak lengths are usu-
ally larger than TF ChIP-seq peak lengths. We shifted focus
from evaluating summits around a window size to the nar-
row peak regions for a more comprehensive evaluation.

Evaluation for real TF ChIP-seq data

Evaluations of real TF ChIP-seq peak calling results re-
quired JASPAR motif Position Weight Matrices (PWM) of
each TF. K-mers matching to each TF PWM were identified
by the TFM P-value program (22) with the threshold of 4−8.
Motif positions were detected in the hg19 human genome
by mapping the K-mers using the Bowtie program suite (23).
For each ChIP-seq dataset, the selected tool called a list of
significant peaks with their default thresholds. The shortest
distances between the significant peaks and the correspond-
ing TF motifs were obtained and used as the main evalua-
tion metric. Specifically, we evaluated the fraction of top n
up to 1000 peaks, ranked by significance within a 100 bp
window of a motif. We also examined the empirical cumu-
lative distribution of the shortest distance of those top 1000
peaks for each tool.

F-Seq2 auto filter design for paired-end ATAC-seq data peak
calling

We designed the PE auto filter based on the fragment size
distribution partitions modeled by Buenrostro et al. (2),
where fragment lengths under 100 bp, between 180 and 247
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bp, between 315 and 473 bp, and between 558 and 615 bp
were considered to originate from nucleosome free, mono-
, di-, and tri-nucleosomes, respectively. Our auto filter in-
cluded more fragments compared to that of Buenrostro’s
analysis (2), in which they only used fragments under 100
bp for open chromatin analysis (Supplementary Figure S1).
By excluding fragment ranges between the non-overlapping
cutoffs, a large percentage (∼15%) were discarded, leading
to a reduction in recall. These fragments (e.g. between 100
and 180 bp) may contain useful information for identify-
ing open chromatin regions (24). F-Seq2 takes advantage
of more available reads to accurately estimate background
distribution, and only fragments within mono-, di- and
tri-nucleosomes ranges were excluded. Fragments >558 bp
(i.e. multinucleosome-sized fragments) were also rejected as
these fragments are associated with condensed heterochro-
matin (2).

RESULTS

Performance on simulated datasets

To accurately evaluate the peak callers under a variety of
scenarios, each method was benchmarked on 100 sets of
paired simulated treatment and control data. F-Seq2 and
MACS2 were found to be the top two performers with the
highest overall F-score operating characteristic curves (Fig-
ure 1A). The highest F-scores estimated by generalized ad-
ditive models across 100 pairs were 0.897, and 0.884 for
F-Seq2 and MACS2, respectively. Both methods outper-
formed MUSIC, the third-best method, by a margin of ∼0.1
(MUSIC 0.781). Despite differences in implementing a dy-
namic parameter λlocal between F-Seq2 and MACS2, the
performance gap suggests using a dynamic parameter λlocal
in ranking peaks is a huge advantage, effectively removing
false positives, consistent with the conclusion from Thomas
et al. (16). The number of peaks called by the default thresh-
old of each peak caller was compared to the number of
peaks in the ground truth (Figure 1B). F-Seq2 best corre-
lated with the ground truth (r = 0.88) while MUSIC (r =
0.74) had a slightly better correlation compared to MACS2
(r = 0.70). The high correlation observed for F-Seq2 indi-
cates the default threshold of our program is reliable when
estimating the number of significant peaks under a simula-
tion setting.

Although control data are often essential for modeling
background distributions for candidate summits, F-Seq2
demonstrated a highly balanced performance between pre-
cision and recall on simulated ChIP-seq data without con-
trols (Figure 1C and D). F-Seq2 had the highest overall
curve, which stood out among the other peak callers, in-
cluding MACS2 and the original F-Seq, and achieved com-
parable performance (0.883) to those with control datasets
(0.897). These results suggest that a significant amount of
control information is contained within treatment dataset
at a large scale. This is also evident in the real FoxA1 ChIP-
seq dataset (7) where control read counts correlated well
with treatment read counts in 10 kb windows across the
genome. The observed high correlation and performance
of F-seq2 implies that control information can be robustly
extracted from treatment data and can be used to estimate
background distribution for peak calling, given it does not

greatly contradict with the treatment data and given a sta-
tistically rigorous modeling method for treatment data (e.g.
F-Seq2 KDE). For real ChIP-seq datasets, especially where
the correlation is low between control and treatment data,
calling peaks without control data is less accurate due to the
loss of unique information and cannot be recovered from
treatment data (14).

Performance on real datasets

The absence of control data is more often seen in DNase-seq
and ATAC-seq experiments compared to ChIP-seq. There-
fore, F-seq2 was directly compared to MACS2 on ATAC-
seq data to further evaluate performance in the absence of
control data (Figure 2). Both F-Seq2 with paired-end (PE)
auto mode and MACS2 with single-end (SE) shift-extend
mode, which are two different strategies to avoid calling
peaks on nucleosome centers, precisely identified open chro-
matin regions with their top ranked peaks (see ‘Materials
and Methods’ section for auto filter design details). The
higher overall characteristic curve of F-Seq2 (highest F-0.5
score = 0.62) indicates the filter-based method is more ef-
fective in avoiding peaks called on nucleosomes compared
to the shift-based method. MACS2 SE shift-extend mode
outperformed its PE mode (highest F-0.5 scores: 0.58 ver-
sus 0.54) at low genome coverage (1% of human genome).
This precision gained by the shift-extend strategy is likely
why single-end data is used as part of the official ENCODE
ATAC-seq data analysis pipeline (12). At larger genome
coverage (2%), F-Seq2 PE without filter mode, and SE
mode showed superior performance versus all other modes
(both had the highest value for F-0.5 score = 0.62 at dif-
ferent coverages). This observation suggests that the addi-
tional data improved precision for medium ranked peaks
in F-Seq2 in its non-filter-based mode, which takes advan-
tage of the greater genomic information available for more
robust and accurate background estimations at the cost of
precision at low genome coverage.

Interestingly, the original F-Seq1 with SE mode had a
similar characteristic curve to F-Seq2 with SE mode, and
even better performance at larger genome coverage. The
similar performance observed for both versions validates
the assumption F-Seq1 made that the peaks with higher sig-
nals are more likely to be true positives (versus false pos-
itives) in open chromatin datasets compared to those in
ChIP-seq datasets. This alleviates the need to further con-
duct the dynamic Poisson tests in DNase-seq and ATAC-
seq datasets while maintaining high F-0.5 scores. Despite
the effectiveness of the dynamic Poisson test at filtering out
false positives in ChIP-seq datasets, it potentially filters out
more true positives in ATAC-seq datasets, shown by the su-
perior performance of the original F-Seq with SE mode at
larger genome coverage. F-Seq peak ranks can be repro-
duced in F-Seq2 by ranking peaks with signal values.

F-Seq2 was benchmarked on three real ChIP-seq datasets
to confirm that the observed high performance under the
simulated situations can be recapitulated using real data. F-
Seq2 had the largest fraction of top n peaks (up to 1000
peaks) within 100 bp of a CTCF motif (Figure 3). GEM
was the second largest with slightly better performance than
MACS2. The empirical distribution of the distance of called
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Figure 1. Comparison of peak callers on 100 pairs of simulated transcription factor ChIP-seq datasets. (A) The F-score operating characteristic curve
where F-score is plotted as a function of the log10 top number of peaks called with control data. Generalized additive models are used to estimate the mean
and 95% confidence intervals (shaded areas) of 100 peak calling results for each peak caller. (B) Boxplot of the number of peaks called by each peak caller
with default threshold with control data, and the number of significant peaks in ground truth. Numbers are shown in log10 scale. Pearson’s correlation
coefficient r is shown above the bridge linking peak caller and ground truth. (C) The F-score plot without control data. SPP was not able to run without
control. GEM resulted in few peaks which is not shown in the plot. (D) Boxplot without control data.

peaks to the nearest CTCF motif showed a clear perfor-
mance advantage for GEM in detecting peaks centered
around motifs: 80% of the 1000 most significant peaks were
within 4 bp of a CTCF motif. This performance differen-
tial is due to GEM’s utilization of motifs, where the tool in-
tends to improve peak calling accuracy at the expense of in-
creased run time, and potentially introducing bias by rank-
ing peaks without motifs lower than those containing a TF
motif. MACS2 and F-Seq2 had the shortest execution time
for the CTCF datasets while maintaining favorable perfor-
mance relative to GEM (Supplementary Figure S2). Sim-
ilar trends were observed in the MAFK ChIP-seq dataset
benchmarking results, with SPP being an exception as it
had the most variable number of peaks called by a default
threshold between the two TFs (Supplementary Figure S3).
However, all peak callers had a much lower and barely dis-
tinguishable performance between each other on STAT1
(Supplementary Figure S4). Karimzadeh and Hoffman (25)
showed that 76 out of 220 chromatin factor ChIP-seq peaks
lacked relevant sequence motifs, and STAT1 peaks were low

in motif occupancy (below 50%), suggesting that evaluat-
ing peak callers using motifs may not reflect actual perfor-
mance. As the motif-centered evaluation is likely problem-
atic, it is necessary to use the more accurate and precise sim-
ulated ground truth data when assessing tool performance.

DISCUSSION

The highly balanced performance of F-Seq2 between preci-
sion and recall across different assays is noteworthy. Ker-
nel density estimation (KDE), which is a nonparametric
method to model the read probability distribution, has an
advantage over explicit modeling methods. Confounding
experimental and biological factors, such as antibody speci-
ficity, DNA susceptibility to enzymes and sequencing read
mappability make it difficult to form explicit assumptions
(26), especially across different assays. The advantage of
KDE has been demonstrated by the original peak caller
F-Seq, which is the top-performing peak caller on DNase-
seq datasets (1), and frequently used for FAIRE-seq data
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Figure 2. Comparison of F-Seq2 and MACS2 on the ATAC-seq paired-end data in GM12878. The F0.5-score operating characteristic curve where F0.5-
score is plotted as a function of the genome coverage in base pairs by the top ranked peaks. F0.5-score put more emphasis on precision than recall due to
the incompleteness of our ‘ground truth’. MACS2 was run with two modes: SE shift-extend mode and PE mode. SE shift-extend mode first shifted both
5′ and 3′ ends 75 bp toward outside (5′ end in 3′ to 5′ direction, 3′ end in 5′ to 3′ direction), then extended 150 bp toward inside. This approach smoothed
the counts of cutting events by the extension size, which is used by the ENCODE ATAC-seq data analysis pipeline (12). F-Seq2 was run with three modes:
PE auto mode, PE without filter mode and SE mode. PE auto mode used the F-Seq2 auto filter that is designed based on nucleosome-related fragment
length information (see ‘Materials and Methods’ section for design details). Dots on curves indicate the genome coverage of significant peaks by the default
threshold of each peak caller.

Figure 3. Comparison of peak callers on the CTCF ChIP-seq in ascending aorta female adult (51 years). (A) The fraction of top n peaks within 100 bp of
a CTCF motif. (B) The empirical distribution of the shortest distance of the called peaks to a CTCF motif. The subplot shows the number of significant
peaks called by each method using the default threshold.

peak calling (3). We designed a new statistical framework
and introduced new features to F-Seq to further improve
the performance in this second version. Adding support for
user-input control data allows for F-Seq2 to more accu-
rately model background reads distribution together with
the treatment reads distribution. With the help of a dy-
namic parameter λlocal, read distributions around candi-
date summits can be summarized into significance values
accounting for local biases, leading to statistically robust
peak ranks and peak calls. The joint effect of KDE and the
dynamic parameter demonstrated superior performance in
our benchmarking results, especially without control data.
This suggests control information can be extracted from
treatment data, given control and treatment data are well
correlated. The support of control data allows for a more bi-
ologically meaningful signal to be reconstructed by weight-
ing the treatment with control data, which leads to a better

sanity-check when comparing and combining signals from
different datasets (11).

Whether control data is a dispensable dataset for ChIP-
seq peak calling requires further investigation. Recent pa-
pers (14,27) that predict the linear weights for control
datasets from treatment datasets provide evidence that con-
trol information can be extracted from treatment data. In
our simulation results, a comparable performance was ob-
served when using or omitting control data. F-Seq2 runs
using experiments with real ChIP-seq data showed only a
slightly decrease in performance without control data (data
not shown). We suspect that the high correlations between
control and treatment data explain the observation that
control data are not required in a simulation setting. How-
ever, conclusions cannot be made based on the small per-
formance difference on the real ChIP-seq datasets due to
evaluation biases with motifs. We are unable to determine
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if a large observable discrepancy (low correlation) between
control and treatment data is due to either the low quality
of the datasets or the indispensable information contained
within control dataset.

F-Seq2 is compatible and suitable for IDR analysis that
we recommend as a more reliable approach to determine
a significance threshold when working with replicates. The
IDR algorithm requires peak callers to run at a relaxed
threshold to include both signal and noise peaks within the
output to detect the consistency transition point between
the two groups (15). During benchmarking, the MACS2
peak width detection was observed to be tied to peak de-
tection. When the q-value threshold was lowered, by de-
fault MACS2 called not only more peaks, but larger width
peaks, and may cause irreproducibility as a side-effect (i.e.
changing the significance scores and ranks of called peaks).
We developed F-Seq2 with summit-focused statistical test-
ing and used separate parameters for peak width detection
and summit detection. F-Seq2 reliably reproduces the same
exact summits and peaks when lowering the P-value or q-
value threshold, and an individual significance score for
each summit is calculated. Having separate scores for each
summit and less rank ties by P-value interpolation are es-
sential for IDR to precisely identify the transition point,
representing the desired threshold. We have built a peak
calling pipeline for a pair of replicates with F-Seq2 followed
by an integrated IDR analysis with our recommended set-
tings, which is directly accessible through the command line
interface.

F-Seq2 further pushes the potential in the mature field of
peak calling. The accuracy of peak calling is essential for
downstream analysis, such as differential and motif analy-
sis, to discover new biological insights and mechanisms with
HTS data.

DATA AVAILABILITY

Data accessibility and peak caller parameter settings. Sim-
ulated data were reproduced from Thomas et al. (16).
The adapted scripts to simulate ChIP-seq data, and the
scripts to run all peak callers are available at https://github.
com/Boyle-Lab/F-Seq2-Paper-Supplementary. The acces-
sion numbers of all ENCODE data, and the IDs of all JAS-
PAR motifs used in this study are also available at this web-
site.

Software availability. The F-Seq2 software and docu-
mentation are available at https://github.com/Boyle-Lab/F-
Seq2. F-Seq2 can be installed through the Python Package
Index (PyPI) and the Conda package manager.
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Supplementary Data are available at NARGAB Online.
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22. Touzet,H. and Varré,J.-S. (2007) Efficient and accurate P-value
computation for Position Weight Matrices. Algorithm Mol. Biol., 2,
15.

23. Langmead,B., Trapnell,C., Pop,M. and Salzberg,S.L. (2009) Ultrafast
and memory-efficient alignment of short DNA sequences to the
human genome. Genome Biol., 10, R25.

24. Tarbell,E.D. and Liu,T. (2019) HMMRATAC: a Hidden Markov
ModeleR for ATAC-seq. Nucleic Acids Res., 47, e91.

25. Karimzadeh,M. and Hoffman,M.M. (2019) Virtual ChIP-seq:
predicting transcription factor binding by learning from the

transcriptome. biorxiv doi: https://doi.org/10.1101/168419, 12 March
2019, preprint: not peer reviewed.

26. Valouev,A., Johnson,D.S., Sundquist,A., Medina,C., Anton,E.,
Batzoglou,S., Myers,R.M. and Sidow,A. (2008) Genome-wide
analysis of transcription factor binding sites based on ChIP-Seq data.
Nat. Methods, 5, 829–834.

27. Awdeh,A., Turcotte,M. and Perkins,T.J. (2019) WACS: Improving
ChIP-seq Peak Calling by Optimally Weighting Controls. bioRxiv
doi: https://doi.org/10.1101/582650, 28 March 2019, preprint: not
peer reviewed.

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/3/1/lqab012/6148839 by U

niversity of M
ichigan Law

 Library user on 09 M
arch 2021

https://www.doi.org/10.1101/168419
https://www.doi.org/10.1101/582650

