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ABSTRACT

Understanding the functional consequences of ge-
netic variation in the non-coding regions of the hu-
man genome remains a challenge. We introduce h ere
a computational tool, TURF, to prioritize regulatory
variants with tissue-specific function by leveraging
evidence from functional genomics experiments, in-
cluding over 3000 functional genomics datasets from
the ENCODE project provided in the RegulomeDB
database. TURF is able to generate prediction scores
at both organism and tissue/organ-specific levels for
any non-coding variant on the genome. We present
that TURF has an overall top performance in predic-
tion by using validated variants from MPRA experi-
ments. We also demonstrate how TURF can pick out
the regulatory variants with tissue-specific function
over a candidate list from associate studies. Further-
more, we found that various GWAS traits showed the
enrichment of regulatory variants predicted by TURF
scores in the trait-relevant organs, which indicates
that these variants can be a valuable source for fu-
ture studies.

INTRODUCTION

Characterizing the biological impact of variation in the
non-coding regions of the human genome remains a chal-
lenge in the interpretation of human diversity. Genome-
wide association studies (GWAS) have identified millions
of genetic variants that are associated with diverse disease
traits (1). Most of these variants (∼90%) map to the non-
coding regions of the human genome (2). Due to the lack
of understanding of these regulatory elements within non-
coding regions, it is important to assess the functional con-
sequences of these disease-related variants from GWAS.

To facilitate studies of non-coding genomic regions, large
consortia, including ENCODE (3,4) and the Roadmap
Epigenomics projects (5), have defined the human regula-

tory landscape using high-throughput functional genomics
assays. For example, DNase-seq locates open chromatin re-
gions in the genome (6,7), while ChIP-seq identifies chro-
matin modification patterns and transcription factor (TF)
binding sites within regulatory elements (8–10). With fur-
ther incorporation of variant genotypes into these methods,
variants associated with differential TF binding and chro-
matin states have been described (11–13). In addition, mas-
sively parallel reporter assays (MPRA) identify regulatory
variants that affect gene expression levels directly (14–16).
More recently, SNP-SELEX assays assess the binding affin-
ity between TFs and SNP-containing genomic sequences in
the non-coding regions (17). These studies demonstrate that
a significant number of variants drive regulatory state vari-
ation across the population, and potentially explain the di-
versity in disease risk and phenotype observed from GWAS
studies.

Computational tools have helped prioritize regulatory
variants in non-coding regions by leveraging knowledge
from functional genomics assays. Prediction scores of func-
tional probability for variants are available from tools in-
cluding RegulomeDB (18), GWAS3D (19), HaploReg (20),
gkm-SVM (21), DeepSEA (22), DeepBind (23), DanQ (24)
and Basenji (25). The process of narrowing down a can-
didate list of variants using these prediction scores can
reduce time-consuming validation experiments. However,
most current computational tools overlook the unique-
ness of gene regulatory networks found within different tis-
sues by only providing a prediction score at an organism
level. This can be misleading for research groups focused
on tissue-specific functional variants. New tools have re-
cently become available that provide tissue-specific predic-
tion scores or prioritize relevant tissues for candidate reg-
ulatory variants, such as FUN-LAD (26), GenoNet (27),
cepip (28), GenoSkyline (29) and Motif-Raptor (30). How-
ever, they mainly utilize epigenetic data from the Roadmap
Epigenomics project (5) making it hard to leverage their
results against other tissues not included in the Roadmap
project. The ENCODE project currently houses thousands
of ChIP-seq and DNase-seq datasets in over 200 tissues and
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cell types, including those from the Roadmap project, that
can further increase the scale and accuracy of tissue-specific
function prediction.

Here, we introduce a computational tool, TURF (Tissue-
specific Unified Regulatory Features), that prioritizes reg-
ulatory variants in the non-coding regions of the human
genome. TURF is built on our RegulomeDB framework to
allow for easy delivery of our predictions as well as con-
stant updates in the functional annotations across the hu-
man genome. We extend our previous algorithm SURF
(31) to predict tissue-specific functional variants in addition
to the tool’s original generic context at an organism level.
To construct a high-quality training set, we called 7,530
allele-specific TF binding (ASB) single nucleotide variants
(SNVs) in six cell lines from over 600 ChIP-seq datasets.
We then trained a random forest model using features from
functional genomic annotations across all available tissues
from ENCODE. This classifier greatly improves the robust-
ness of RegulomeDB v1.1 ranking scores. We then incor-
porated annotations of histone marks and open chromatin
regions in a particular tissue to train a separate random
forest model and obtain a final tissue-specific score. The
tissue-specific score leverages information from other tis-
sues, as well as retaining the uniqueness of individual tissues
and surpasses other top-performing tools. Moreover, we ex-
tended the tissue-specific scores to organ-specific scores in
the 51 organs with available genomics data from the EN-
CODE project. The pre-calculated organ-specific scores for
all GWAS SNVs from the GWAS Catalog are available
at https://github.com/Boyle-Lab/RegulomeDB-TURF and
TURF is currently being integrated into RegulomeDB v2.0.

MATERIALS AND METHODS

Training dataset generation

We identified 7530 allele specific transcription factor (TF)
binding (ASB) SNVs in six cell lines (GM12878, HepG2,
A549, K562, MCF7 and H1hESC), which are defined as
variants that result in stronger binding of a TF to one allele
at heterozygous sites in an individual. The AlleleDB proto-
col was used to call ASB SNVs (32).

The SNVs in GM12878 and H1hESC were obtained
from the 1000 Genome Project (33) and NCBI GEO
database (accession number: GSE52457) separately. For
the other four cell lines, variants were called from their
whole genome sequencing data (data accessible at NCBI
SRA database with accession numbers: DRX015191,
SRX2598759, SRX285595 and SRX1705314) by Haplo-
typeCaller from the Genome Analysis Toolkit (GATK)
v3.6 (34) following GATK’s Best Practices (https://gatk.
broadinstitute.org/). Their diploid personal genomes were
constructed using vcf2diploid v0.2.6 (35) to avoid alignment
biases favoring reads containing reference alleles by map-
ping to maternal and paternal genomes separately. Copy
number variation regions with a read depth of <0.5 or >1.5
called from CNVnator v0.3.3 (36) were filtered out.

The AlleleDB pipeline was run on 864 ChIP-seq datasets
in the six cell lines from the ENCODE project. In addition
to the standard steps in AlleleDB, our ASB set was refined
by performing beta-binomial tests only within reads over-
lapping their corresponding TF binding peaks called from

the same ChIP-seq dataset. In total, 7530 ASB SNVs were
identified from 638 ChIP-seq datasets.

The ASB SNVs were treated as positive examples in
our random forest model. To generate a comparable neg-
ative set, we included SNVs from three sources: (i) The 55
611 non-allelic TF binding SNVs, defined by having equal
ChIP-seq read counts on two alleles at heterozygous site.
(ii) The closest variants from each of the SNVs in positive
set and outside ChIP-seq peaks (6373 unique variants in
total). (iii) A randomly selected set of 1000 genome vari-
ants scored no hits on functional annotations from Reg-
ulomeDB v1.1. Those three negative sets were combined
and weighted equally in our model. The number of train-
ing SNVs in each cell line is shown in Supplemental Table
S1.

Building random forest models

For TURF generic scores, seven binary and eight numeric
features were created for each variant in the training set
(Supplemental Table S2). The seven binary features repre-
sent if the variant position overlaps corresponding func-
tional genomic regions by querying RegulomeDB 2.0. Cus-
tom scripts were written to retrieve annotations from the
RegulomeDB web server. The maximum information con-
tent change from PWM was calculated based on the query.
Quantiles and variations in ChIP-seq signals pre-calculated
from all available bigwig files in ENCODE and functional
significance scores from DeepSEA were also incorporated.
A random forest model was trained to make predictions
on the probability of a query variant being functional. The
scikit-learn 0.20.3 python package was used to train the ran-
dom forest model, setting the number of trees to 500. The
feature importance was calculated based on the mean de-
crease of impurity from random forest model (Supplemen-
tal Table S3).

For TURF tissue-specific scores, a separate random for-
est model was built with seven binary tissue-specific features
(see feature list in Supplemental Table S2). When training
with each ASB cell line, the ASB SNVs in the correspond-
ing cell line were labeled as positive variants, while the other
variants were labeled as controls. The scikit-learn 0.20.3
python package was used, setting the class weight option
as ‘balanced’.

Generic scores performance assessment

We evaluated our generic model performance on an inde-
pendent dataset from an MPRA assay in GM12878 (14).
The labels of the MPRA variants (435 positive variants,
2670 control variants) and prediction scores from DeepSEA
(22) and regBase were downloaded from regBase database
(37). The performance of different tools was assessed on
the Area Under ROC Curve (AUROC) and the Area Un-
der Precision-Recall Curve (AUPR).

Tissue-specific scores performance assessment

The tissue-specific model’s performance was evaluated first
on three MPRA datasets in GM12878 (E116), HepG2
(E118) and K562 (E123). The labels for the MPRA vari-
ants were obtained from GenoNet (27). The authors labeled
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the MPRA variants in GM12878 from (14) with a slightly
different criteria than regBase (37), resulting in 293 posi-
tive variants and 2772 control variants. The MPRA vari-
ants in HepG2 and K562 were from (15), where 524 positive
variants and 1439 control variants were in HepG2, and 339
positive variants and 1361 control variants were in K562.
The same evaluation process as described in GenoNet (27)
was used to compare TURF to other available tools, includ-
ing DeepSEA (22), CADD (38) and GenoSkyline (29). In
detail, we calculated AUROC, AUPR and the correlation
coefficient using 1000 replicates of 4:1 random partition of
each MPRA dataset. For the divided five parts, four parts
were used for training while the remaining part was used for
testing.

When evaluating performance with allele specific TF
binding SNVs, pre-calculated scores from GenoNet (27)
and GenoSkyline (29) were downloaded from https://
zenodo.org/record/3336209/files/ and http://zhaocenter.org/
GenoSkyline.

Extension to organ-specific scores

The mapping from tissues and cell types (i.e. biosamples)
to organ names was downloaded from the ENCODE
website (https://www.encodeproject.org/report/?type=
BiosampleType). When generating organ-specific predic-
tion scores, we combined the annotations from functional
genomics data in all biosamples belonging to the cor-
responding organ. Fifty-one of fifty-five organs had
available ChIP-seq data of histone marks and DNase-seq
data to generate organ-specific scores.

Organ-specific significance scores

We calculated organ-specific significance scores relative to
a background set from GWAS variants. The GWAS vari-
ants were downloaded and assigned to their mapped traits
from the GWAS Catalog (1). SNVs on chromosomes 1–
22 and chromosome X were the only ones considered for
the organ-specific scoring. Linkage disequilibrium (LD) ex-
pansion was performed by including SNVs from the 1000
genome project that are in strong LD (R2 threshold of 0.6,
precalculated R2 values downloaded from gs://genomics-
public-data/linkage-disequilibrium) with any GWAS SNV
(39). To convert each organ-specific score to a significance
score, we calculated the portion of GWAS variants with a
greater score in the corresponding organ and did a negative
log10 transformation on to the portion (Figure 5).

Organ-specific scores enrichment of GWAS traits

In the enrichment analysis, we focused on the GWAS traits
with the enrichment of regulatory variants, which have at
least 20 GWAS SNVs and at least 5% of the LD-expanded
GWAS SNVs in the trait that have TURF generic scores no
less than 0.8 (400 traits in total).

To test the enrichment of organ-specific regulatory vari-
ants, each GWAS trait set was first sampled with an equal
sized background set from all GWAS SNVs from any trait.
Subsequent LD expansion was performed on both the trait
set and background set (with a more strict R2 threshold of

0.8). To reduce the dependencies across SNVs within each
set, the SNVs were pruned on each organ individually so
that no two SNPs were within 1MB of each other in the
same set. Each SNV in decreasing order on organ-specific
score was considered, and only retained a SNV if there was
no other SNV within 1 Mb. After the pruning process, a
P-value was computed from the Mann–Whitney U test for
each organ-trait combination, with the alternative hypothe-
sis as SNVs in the trait set have greater organ-specific scores
than the background set. This test was repeated by sam-
pling 100 versions of the background set and a total of 100
P-values were obtained for each organ-trait pair. 159 traits
had at least one organ passing multiple test correction with
an FDR of 5%, applied with the Holm-Sidak test from the
python package statsmodels v0.12.1.

To determine the top organ for each trait, overall high
scores of the trait were compared to other organs. The neg-
ative log-transformed p-values from the U tests were used
to compute the z-score of each organ over all 51 organs.
The mean z-scores over 100 iterations for each organ-trait
pair were calculated and hierarchical clustering on the 51
organs was performed using the ward linkage method. The
final heatmap (Figure 6 and Supplemental Figure S5) only
shows organ-trait pairs with a z-scores mean higher than
0 and passing multiple test correction (FDR threshold of
5%).

RESULTS

Overview of the TURF algorithm

TURF prioritizes non-coding variants with both generic
scores and tissue-specific scores (Figure 1). It first uses a
random forest model built by training on features from
functional genomics annotations in all available tissues and
cell types from the ENCODE project (3). It uses a similar
feature set to our previously successful algorithm SURF
(31), including binary features retrieved from the original
RegulomeDB ranking scheme and functional significance
scores from DeepSEA (22). Furthermore, it includes con-
tinuous signals from ChIP-seq assays to increase the resolu-
tion of the algorithm (see features list in Supplemental Table
S2). Generic scores from the first random forest model pre-
dict whether the query variant is functional in any human
tissue. Tissue-specificity is further predicted by using a sep-
arate random forest model trained on functional genomic
annotation features only from a particular tissue. To avoid
data availability bias for different tissues, TURF takes ad-
vantage of DNase-seq and well-studied histone mark ChIP-
seq data that cover most tissues (see features list in Supple-
mental Table S2). By combining the probability score from
the second random forest model with the generic score from
the first model, the resulting tissue-specific score predicts
the probability of the query variant being functional in a
specific tissue.

TURF generic score improves the performance of Regu-
lomeDB v1.1 ranking score

TURF improves on the original heuristic ranking score in
RegulomeDB v1.1 by providing a probabilistic score gen-
erated from a random forest model. By replacing the sin-
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Figure 1. Overview of TURF algorithm. TURF generic score predicts the probability of a query variant being functional in any tissue from the first
random forest, which used features of functional genomics annotations from all available tissues. By further incorporating annotations from a given tissue,
a tissue-specific prediction score is computed by multiplying generic score with the prediction score from a second random forest model.

gle empirical decision with sets of decision trees, the model
avoids issues caused by excessive reliance on only a few
functional genomic annotations. To develop a training set
for the model, we generated a set of variants with high
confidence functional confidence through identification of
7,530 allele specific transcription factor binding (ASB) sin-
gle nucleotide variants (SNVs) in six cell lines (GM12878,
HepG2, A549, K562, MCF7 and H1hESC) by reprocess-
ing 864 ChIP-seq datasets from the ENCODE project us-
ing AlleleDB v2.0 (32). ASB SNVs were called if different
TF binding affinity with a single nucleotide change at het-
erozygous sites was observed. We defined a background set
using non-allele specific TF binding SNVs as well as a set
of variants outside TF binding regions (see methods).

We evaluated the TURF generic score performance on an
independent and orthogonal dataset from a massively par-
allel reporter assay (MPRA) (14). This dataset was also uti-
lized as a test set in a previous paper (37), where the authors
found DeepSEA scores provided the best prediction model
for calling variants functional in tissues. TURF performed

on-par with DeepSEA scores on this MPRA test set with a
larger AUROC and the same AUPR (Figure 2). To compare
with the original ranking score from RegulomeDB v1.1,
we calculated TURF generic scores for all common SNPs
from dbSNP153 (40). The SNPs that originally scored in
the highest category, which was largely dominated by eQTL
evidence, now show a wider range of scores that better pre-
dicted their functionalities, while the overall trend was un-
changed (Supplemental Figure S1).

TURF tissue-specific scores performance on MPRA data in
three cell lines

We further evaluated TURF tissue-specific predictions with
MPRA datasets from three cell lines (GM12878, HepG2
and K562) using the same strategy as He et al. (27). Tissue-
specific predictions by TURF had the best performance
in GM12878 versus other top performing computational
tools (Figure 3A and Supplemental Table S4). TURF also
has the top AUROC in HepG2 with the second largest
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Figure 2. TURF generic scores performance on test data from massively parallel reporter assay (MPRA) in GM12878. Performance was evaluated by
Area Under ROC Curve (AUROC) and Area Under Precision-Recall Curve (AUPR). 435 positive variants versus 2670 control variants were called in this
MPRA validated dataset.

Figure 3. Tissue-specific predictions performance comparisons. Each plot shows the AUPR (area under the precision recall curve) on x axis and the
AUROC (area under the receiver operating characteristics curve) on y axis. The size of each point represents the pearson correlation. (A) Performance
on MPRA data in three cell lines (GM12878: 693 positive variants, 2772 control variants; HepG2: 524 positive variants, 1439 control variants; K562: 339
positive variants, 1361 control variants). (B) Performance on allele specific transcription factor binding SNVs (see the number of variants in Supplemental
Table S1).

AUPR (0.571 compared to 0.572 from GenoNet) and the
largest AUPR in K562. Noticeably, the tissue-specific fea-
tures in the second random forest model have significantly
improved the performance of the TURF generic scores.
Among all tissue-specific features, open chromatin regions
from DNase-seq in the corresponding cell lines are the most
important predictors in all three MPRA datasets. Tissue-
specific DNase footprints and active histone marks, includ-
ing H3K4me2, H3K4me3 and H3K27ac, also play essential
roles in variant prediction (Supplemental Figure S2).

TURF tissue-specific predictions on allele specific TF binding
(ASB) SNVs

Despite the power of using MPRA datasets as training sets,
they are currently limited in terms of the number of tested
variants and the variety of tissues. To obtain a more robust
tissue-specific model, we called allele-specific TF binding
(ASB) SNVs from 6 cell lines. When trained on ASB SNVS,
our tissue-specific models greatly outperformed other meth-
ods (Figure 3B and Supplemental Table S4). Among the
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tissue-specific features, DNase-seq peaks and several ac-
tive histone marks, such as H3K4me2 and H3K27ac, were
important predictors of tissue-specific functional variants,
similar to what was observed in the MPRA datasets (Sup-
plemental Figure S3). However, DNase footprints show
more variation in feature importance ranking within the
6 cell lines. This indicates the diversity of DNase-seq data
quality in different cell lines, and suggests that utilization
of a more robust model to compensate for this variation is
needed when extending to other tissues not used in the train-
ing data.

We then trained an ensemble tissue-specific model using
the average predictions from 6 models with feature weights
individually learnt from six ASB cell lines. The histone mark
features were restricted to five histone marks that ranked
high in feature importance, and had available datasets cov-
ering most tissues (i.e. H3K27ac, H3K36me3, H3K4me1,
H3K4me3 and H3K27me3). The ensemble model outper-
formed the individual tissue-specific models when predict-
ing ASB SNVs (Figure 3B and Supplemental Table S4).
Moreover, this ensemble model trained on ASB SNVs per-
formed better than most of the other tools when tested on
the previous independent MPRA datasets in all three cell
lines. The exception was GenoNet, which used labels from
the MPRA datasets in their training step (Supplemental
Table S4). Predictions were computed from this ensemble
tissue-specific model on the ASB SNVs in six cell types and
most exhibited the highest prediction scores in their corre-
sponding functional cell line (Figure 4). However, HepG2
ASB SNVs had the least enrichment of high HepG2-specific
scores, perhaps due to DNase-seq noise in the dataset as
only 25% were in DNase peaks. Some H1hESC ASB SNVs
had high scores in K562 and MCF7, implying that a many
stem cell regulatory variants are involved in regulation of
pathways in differentiated cell lines.

Extension of TURF tissue-specific scores to organ-specific
scores

To expand the scale of prediction for TURF, we lever-
aged tissue-specific functional genomic annotations of tis-
sues belonging to the same organ and generated combined
organ-specific scores across 51 organs. We were able to re-
cover the organ-specific function of some well-studied reg-
ulatory variants in specific genomic loci with TURF scores.
For example, TURF’s organ-specific scoring was able to
pick out the regulatory SNP rs12740374 that affects liver-
specific SORT1 gene expression levels in the 1p13 choles-
terol locus (41) (Figure 5). The liver-specific function of
rs12740374 was also validated in HepG2 MPRA assays
(42). The position of rs12740374 overlaps several active his-
tone mark peaks from ChIP-seq (H3K27ac, H3K4me3 and
H3K4me1) and DNase peaks in liver tissues. These multiple
lines of genomics evidence prioritized rs12740374 as the top
SNP for liver-specific scores within a list of candidates from
previous association studies. In addition to liver, rs12740374
has a high significance score in other organs relevant with
cholesterol metabolism, such as adipose tissue and gonad.
As another example, TURF also detected a regulatory SNP
at the GATA4 locus in the heart (Supplemental Figure S4)

that was initially discovered in a genome-wide association
scan on 466 bicuspid aortic valve cases (43).

TURF organ-specific scores prioritize genetic variants asso-
ciated with traits in relevant organs

We examined TURF organ-specific scores on variants iden-
tified from genome-wide association studies (GWAS) using
the GWAS Catalog portal (1). GWAS variants were found
to be enriched in regulatory elements of non-coding regions
(44,45). We tested the enrichment of putative regulatory
variants prioritized by TURF scores for a variety of traits.
For each trait, the top organ with the highest z-score showed
the most significant enrichment of organ-specific regulatory
variants relative to the background set from all traits within
the GWAS catalog, as well as 50 other organs with the same
trait (Figure 6 and Supplemental Figure S5).

The top enriched organs from diverse traits were consis-
tent with current trait-relevant organ knowledge. For ex-
ample, many immune system related diseases, such as au-
toimmune disease, celiac disease and chronic lymphocytic
leukemia, showed a high enrichment for regulatory vari-
ants functional in immune-related organs, including im-
mune organ, spleen, and lymph node. Traits of immune
cells, such as leukocyte, eosinophil and platelet, were also
enriched in immune organs. Cardiac traits, including PR in-
terval, which is a measurement in electrocardiography, and
coronary artery disease, were enriched in heart and arterial
blood vessel. Enrichment in the colon and immune-related
organs was demonstrated for Crohn’s disease and ulcera-
tive colitis, both inflammatory bowel diseases. Furthermore,
several traits of measurement were enriched for organs in-
volved in relevant metabolic pathways, such as cholesterol
measurement in liver, apolipoprotein A1 measurement in
small intestine (46), renin-angiotensin system (RAS) use
measurement in adrenal gland, and alcohol consumption
measurement in exocrine gland (i.e. salivary gland). Of note,
the enrichment of variants in some traits could be affected
by cofactors, such as gender for body height enrichment
within the vagina and ovary. Also, some organs seem to
share similarities in gene regulatory networks, partly due
to overlapping of tissues, or tissues with similar functions
across different organs. This explains a mixture of brain and
optic traits enriched in either brain or eye, as the optic nerve
gene expression pattern was found to be similar to brain tis-
sue (47).

The most enriched organ for potential regulatory vari-
ants provides new directions for understudied diseases or
traits. For instance, drugs of calcium channel blockers were
found to increase the risk of pancreatic cancer in post-
menopausal women (48), while the underlying mechanisms
remain unclear. Interestingly, pancreas was the top organ
for the calcium channel blocker use measurement trait,
which indicates an enrichment of putative regulatory vari-
ants functional in pancreas. Thus, additional studies on
top variants prioritized by TURF pancreas-specific scores
may help further explain the association between pancreatic
cancer risk and the use of calcium channel blocker drugs.
Similar workflow can be applied to other diseases, such
as Alzheimer’s disease in immune organs, to determine the
causal variants in non-coding regions.
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Figure 4. TURF tissue-specific scores on allele-specific transcription factor binding (ASB) SNVs called from six cell lines. The ASB cell line represents
the functional tissue for ASB SNVs in each row. The tissue-specific scores are shown in violin plots with a given cell line in each column. ASB SNVs have
overall the highest tissue-specific scores in their functional cell line.

Figure 5. Organ-specific significance scores of variants in the 1p13 cholesterol locus. rs12740374 has the top liver-specific significance score compared
to other nearby candidate SNPs from association studies, which was validated to affect SORT1 gene expression level in liver tissue. The organ-specific
significance scores were calculated relative to a background set from GWAS variants (see methods).
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Figure 6. Enrichment of regulatory variants with high organ-specific scores over variants associated with diverse traits. The z-scores of organs (column)
for a given trait (row) are shown. The organ with the highest z-score for each trait is shown in additional columns on left. Only organ-trait pairs with
z-scores higher than 0 and passing multiple test correction (FDR threshold of 5%) are shown. Traits with top z-scores <1.7 were ignored in this plot, see
complete plot Supplemental Figure S5.

DISCUSSION

In this study, we developed TURF, a computational tool
that prioritizes variants in non-coding regions. Evidence
was incorporated from various functional genomic as-
says to produce robust predictions that were verified via
MPRA assays in both generic and tissue-specific contexts.
The workflow was designed to identify regulatory variants
from association studies with tissue/organ-specific regula-
tory function. Moreover, we found GWAS variants were en-
riched with regulatory variants predicted by TURF organ-
specific scores in trait-related organs.

To balance between prediction accuracy and data avail-
ability, we trained TURF on ASB SNVs identified from
ChIP-seq to determine the weight of features in a tissue-
specific context, then extended the scale of annotation to an
organ-specific level. The TURF tissue-specific scores lever-

age information gained from other tissues while retaining
the uniqueness of the gene regulatory network in individ-
ual tissues. We were able to prioritize putative organ-specific
regulatory variants across 51 organs in diverse pathways.
A number of computational tools have been developed re-
cently for similar purposes however, most focus on genomic
assays and tissues from the Roadmap project (27,29). This
makes it difficult to utilize their results for tissues not in-
cluded in the Roadmap project. As an alternative, we took
advantage of over 3000 genomic assays in >200 tissues
and cell types available from the ENCODE project, ex-
panding the annotation scope and enhancing the robust-
ness of our predictions. Most relevant organs of various
GWAS traits were recovered from the organ-specific scores,
including some well-studied traits, such as LDL choles-
terol measurement and immune diseases. These results were
mirrored in active histone marks using epigenomics data
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from the Roadmap project (45). In addition, we observed
novel organ-trait pairs, including pancreas in calcium chan-
nel blocker use measurement, which can help elucidate un-
derlying disease mechanisms. As more functional genomics
datasets are generated, our algorithm is flexible allowing
for addition of new tissues by querying histone mark and
DNase features within the new tissue and then computing
new tissue/organ-specific scores. In addition to the variants
from GWAS studies, TURF scores can also be implemented
on any personal genome as a way to prioritize potential reg-
ulatory variants for individuals (Supplemental Figure S6).

Despite the large scale of annotation utilizing the 51 EN-
CODE organs, further refinement of the organ terms and
the tissues assigned to each organ is possible. Some traits in
Figure 5 showed enrichment in non-relevant organs, such
as household income in the bipolar neuron. This could be
partly due to cofactors within individual GWAS samples,
but can also imply an imbalance in the number of genomic
datasets across diverse organs as the bipolar neuron (i.e. ear)
only contains one ENCODE biosample. Due to the limita-
tion of data availability, we only used seven tissue-specific
binary features when building the second random forest
model. With more functional genomics data being gener-
ated, especially those targeting more histone marks, we can
expand our feature set and generate a wider spectrum of
prediction scores. The organ-specific scores can then be nor-
malized across different organs to eliminate bias from data
availability. The organ-specific scores for a variant will be
more comparable over a list of interested organs. In addi-
tion, as more single cell data is being generated, we can ex-
plore more complex models other than simply combining
all annotations at organ-levels, for example to separate can-
cer cells and normal cells.

We used MPRA data to validate our method as these as-
says provide more direct evidence of variants affecting gene
expression than other association analyses, such as eQTLs,
which can be affected by variants that are in strong linkage
equilibrium. However, we could only test our model in three
MPRA cell lines when comparing performance to other
tools. We found one tool used MPRA data labels causing
overfitting when tested on ASB SNVs. We built an ensemble
model trained on SNVs from six cell lines to avoid the over-
fitting. With more MPRA data becoming available in the
future, we can provide a more thorough comparison of per-
formance and further refine our model by including train-
ing variants from more cell types or more types of assays.
In addition, it will be possible to integrate features from
3D conformation assays, such as Hi-C and ChIA-PET, in
a tissue-specific manner to further improve TURF perfor-
mance as more datasets in high resolution become available.
Moreover, although the ENCODE project already includes
datasets from human tissues in addition to cell lines, incor-
porating more datasets from other large consortia, such as
the GTEx project, will further enhance TURF performance
on annotating non-coding variants. While initially focusing
on single nucleotide variation, TURF has the potential to
be leveraged to other classes of variants, such as small IN-
DELs, but might not be appropriate for other more complex
structural variation.

Overall, TURF is able to prioritize regulatory variants
with either generic or tissue-specific functions. We expect
our tool to enhance future studies on functional conse-

quences of regulatory variants associated with diseases from
GWAS. The organ-specific scores generated here will be in-
corporated into the RegulomeDB database. We also include
GWAS variants as a part of a Docker pipeline and as a pub-
lic Amazon Machine Image to allow annotation of the most
updated GWAS datasets, making it a useful tool for broad
communities.

DATA AVAILABILITY

The RegulomeDB TURF pipeline including a docker in-
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