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Abstract 

Tandem repeat sequences comprise approximately 8% of the human genome and are linked to more than 50 neurodegenerative disorders. Ac- 
curate characterization of disease-associated repeat loci remains resource intensive and of ten lac ks high resolution genotype calls. We introduce 
a multiple x ed, targeted nanopore sequencing panel and HMMSTR, a sequence-based tandem repeat copy number caller which outperforms 
current signal- and sequence-based callers relative to two assemblies and we show it performs with high accuracy in heterozygous regions and 
at low read coverage. The flexible panel allows us to capture disease associated regions at an a v erage co v erage of > 150x. Using these tools, 
w e successfully characteriz e kno wn or suspected repeat expansions in patient derived samples. In these samples, we also identify unexpected 
expanded alleles at tandem repeat loci not previously associated with the underlying diagnosis. This genotyping approach for tandem repeat 
e xpansions is scalable, simple, fle xible and accurate, offering significant potential f or diagnostic applications and in v estigation of e xpansion 
co-occurrence in neurodegenerative disorders. 
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andem repeat (TR) sequences constitute about 8% ( 1 ) of the
uman genome, and more than 50 neurodegenerative condi-
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tia (FTD), polyglutamine-associated spinocerebellar ataxias,
Huntington’s disease and myotonic dystrophy ( 2 ). A num-
ber of these neurodegenerative conditions exhibit overlap-
ping clinical symptoms. Thus, when screening for pathogenic
expansions, multiple regions need to be examined. Current
molecular methods for TR sizing, such as repeat primed poly-
merase chain reaction (PCR) and southern blotting, genotype
only one locus at a time and are labor intensive. As such, cur-
rent diagnostic methods remain inefficient ( 3 ). 

Alternatives to these methods include high-throughput se-
quencing approaches. The application of short-read sequenc-
ing techniques to TR genotyping is limited, as the number of
repeat motif copies needed for pathogenicity often exceeds the
length of a single read. Thus, their ability to characterize large,
low complexity regions has stifled their adoption in clinical
settings ( 4–8 ). Long-read sequencing methods, such as PacBio
and Oxford Nanopore Technologies (ONT), provide an at-
tractive alternative that can sequence through disease associ-
ated regions despite their length and complex motif structure.
However, these methods come with their own challenges, in-
cluding relatively high cost and decreased accuracy in repeti-
tive regions ( 9–11 ). 

While whole-genome, long-read sequencing has been rev-
olutionary in characterizing TRs, it remains resource inten-
sive. Compared to PacBio, ONT sequencing benefits from be-
ing more cost effective and accessible. Additionally, multiple
targeted sequencing methods have been developed to provide
efficient characterization of genes and regions of interest. Tar-
geted sequencing, or the ability to selectively sequence regions
of interest, offers an advantage over whole genome sequencing
(WGS) by decreasing the amount of reagents and sequencing
needed to obtain high coverage over targets ( 12 ). 

Recently, two techniques have been developed for targeted
sequencing using ONT. The first, ReadFish, uses computa-
tional tools to select for target fragments during a live se-
quencing experiment ( 12 ). In 2022, this technique was used to
successfully genotype disease-associated TRs using the Read-
Fish API. The second targeted sequencing approach, termed
nanopore Cas9-Targeted sequencing (nCATs), uses CRISPR-
Cas9 to selectively sequence regions of interest using RNA
guides and was found to outperform computational enrich-
ment for TR genotyping ( 9 ,13–16 ). However, the application
of nCATS to comprehensively genotyping disease-associated
TRs has yet to be extended beyond common ataxias found in
European populations ( 15 ). 

Targeted sequencing techniques have been used in conjunc-
tion with existing long-read sequencing bioinformatic geno-
typing tools and significantly improve on WGS for TR geno-
typing. Various bioinformatics tools have been developed to
overcome sequencing errors for copy number determination
from ONT long-read sequencing data. However, many are de-
signed for WGS and prioritize the discovery of novel, large ex-
pansions rather than accurately genotyping specified targets
( 17–19 ). 

Methods designed for PacBio HiFi data, such as TRGT ( 20 ),
rely on the generation of consensus sequences from highly ac-
curate circular consensus sequencing (CCS). However, com-
paratively high error rates in repetitive regions, which can im-
pede accurate TR genotyping, necessitate accounting for er-
rors in ONT reads ( 9 ). Nanopore-specific, signal-based meth-
ods have emerged as a promising approach for directly calling
TR copy numbers from nanopore signal data to minimize er-
rors introduced by basecalling ( 9 ,13,14 ). These methods have
demonstrated success with targeted sequencing, but they suf- 
fer both runtime and storage capacity burdens due to the need 

for storing and processing the signal data ( 9 , 14,15 , 21 ). 
In response to the current limitations and challenges of 

genotyping the wide range of disease-associated TRs in a cost- 
effective manner, our study aims to establish a scalable and 

easily extendable sequencing and bioinformatics workflow for 
accurate and efficient copy number determination capable of 
interrogating all known disease-associated repeat expansion 

loci. Our strategy combines a multiplexed nCATS approach 

using a guide pool to target over 50 disease-associated repeat 
expansion loci on a single ONT MinION flow cell, the most 
comprehensive panel to date ( 15 ). Alongside this, we intro- 
duce a profile Hidden-Markov Model STR (HMMSTR) copy- 
number caller optimized for sequence-based targeted sequenc- 
ing data. HMMSTR models ONT errors and aims to com- 
bine the workflow and accuracy of signal-based copy number 
callers with the efficiency of sequence-based methods. 

Materials and methods 

The HMMSTR model 

The HMMSTR model is a modified version of a profile HMM 

( 22 ). The model is made up of five distinct sections: the up- 
stream genome state, prefix states, repeat motif states, suffix 

states, and downstream genome state (Figure 1 A). The prefix,
repeat and suffix states follow a three layer (match, insertion,
deletion) profile HMM structure. Match state emission prob- 
abilities are encoded with the expected base at each position in 

either the flanking sequence or the repeat motif while insertion 

state emissions follow a uniform distribution across all ob- 
served bases and the deletion states encode a silent character.
Emission probabilities at match states reflect mismatch rates 
based on the expected base at a given position and transition 

probabilities encode expected rates of insertions and deletions.
One copy of the expected motif is encoded in the model and 

edges are added between the last states in the motif to states 
at the beginning of the repeat section (Figure 1 A). This allows 
the Viterbi algorithm to find paths through as many repeat 
motifs as are found in the given sequence. Our model allows 
for local alignment to the TR and the direct flanking sequence 
through the use of genome states with emission probabilities 
following a uniform distribution (default). 

Model parameter estimation 

Baum-Welch was run on sequences obtained by the align- 
ment of plasmid sets to plasmid backbone sequence per ex- 
pected repeat count to estimate model parameters ( 23 ). While 
Baum–Welch failed to converge, multiple parameter estimates 
at later iterations were stable and corresponded well with 

literature on the same sequencing chemistry for all emis- 
sion probabilities and combined deletion-insertion rate ( 10 ).
Notably, Baum–Welch successfully recovered previously re- 
ported bias in substitution errors. All other parameters were 
estimated based on literature. Model parameters can be up- 
dated as chemistries and basecallers improve or for custom 

use (see HMMSTR documentation: https:// github.com/ Boyle- 
Lab/HMMSTR ). 

Modification of the Viterbi algorithm 

The Viterbi ( 24 ) algorithm was modified to allow for paths 
through deletion states without requiring labeled deletions in 

https://github.com/Boyle-Lab/HMMSTR
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Prefix States Suffix StatesRepeat States

Start

Genome Genome

End

Match States Insertion States Deletion States

P(A | PM1) = 0.98
P(G | PM1) = 0.012
P(C | PM1) = 0.004
P(T | PM1) = 0.004

A B

Figure 1. The HMMSTR model and concordance with ground truth plasmid sets. ( A ) A breakdown of the HMMSTR model including sample emission 
probabilities for a position with an expected ‘ A ’ nucleotide. ( B ) Results from GGGGC plasmid benchmarking construct with target repeat lengths 21 and 
41, HMMSTR calls 20 and 40. Dashed lines represent ground truth repeat count. 
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he observed sequence prior to the run. Effectively, the dele-
ion states in the HMMSTR model are treated as silent states
here the emission and transition probabilities combined rep-

esent the deletion rate and transitions to deletion states do
ot consume an observed symbol ( 25 ). Briefly, we added a
hird dynamic programming trellis to keep track of when a
ransition through a deletion state was optimal and allowed
or horizontal paths through the traceback trellis to account
or these transitions. In this way, we can determine when to
ndex horizontally instead of diagonally and add a deletion
haracter as opposed to an observed character from the input
equence. 

he HMMSTR workflow 

ead processing 
nput flanking sequences are aligned to each read in the sam-
le independently using Mappy (version 2.24) ( 26 ). A given
ead is considered for downstream analysis if (1) it has a valid
lignment to both the prefix and suffix of at least one target,
2) the prefix and suffix for at least one target are in the correct
rientation with respect to the strand and (3) the prefix and
uffix mapq scores exceed the score cutoff threshold (default:
apq 30). If the read satisfies these requirements, it is assigned

o all qualifying targets (multiple targets may be considered). 
Alternatively, a bam file may be passed as input along with

arget coordinates and a reference genome. In this case, reads
re assigned to targets based on their alignment coordinates
sing pysam ( https:// github.com/ pysam-developers/ pysam ). 
Once a read passes the initial filtering and assignment step,

ts sequence is trimmed to include only the 400bp flanking
he prefix and suffix alignment positions. This step is used to
ecrease the runtime of the Viterbi step (which scales to obser-
ation length linearly). We choose to keep the larger flanking
equence to mitigate the effect of poor alignment and ensure
se of the entire directly flanking sequence. 

epeat motif counting 
epeat copy numbers were counted by taking the total length
f the identified repetitive region in the labeled sequence, sub-
racting the number of insertions identified and dividing by the
ength of the given motif. Note that deletions are accounted
or in the labeled sequence and are thus included in this cal-

ulation.  
Identifying and filtering outlier repeat copy numbers 
HMMSTR has an option to filter outlier repeat counts. This
can be useful when dealing with larger datasets where there
are more likely off-target reads, high coverage datasets with
large tails or PCR products with amplification bias. We desig-
nate outliers using the interquartile range (IQR) of the repeat
copy number data for a given target. Reads with copy num-
bers that are outside of this range will be filtered before peak
calling is performed. 

Summary statistics and peak calling 
By default, HMMSTR chooses between Kernel Density Es-
timation (KDE) with a gaussian kernel and Gaussian Mix-
ture Modeling (GMM) for calling genotypes from the per-read
copy number data. Both methods have advantages in distinct
situations depending on the distribution of the data. 

KDE resolves homozygotes better than GMM in situations
where the data has a narrow IQR with few outliers. In this
situation, the GMM will overcall heterozygous regions while
the KDE is more able to distinguish hetero- and homozygosity.
However, the GMM can more accurately detect distributions
with larger distance between means and is less often skewed
by outliers. A third case is also considered where the quantile
range of the data is narrow but there exists few outliers. In
this case, a KDE is optimal with the exception of the outliers.
Thus, in this case outliers are filtered and a KDE is used to
call the genotype since the majority of the data remains in the
IQR. This choice can also be overridden as an input along
with multiple KDE parameters. 

The number of alleles, or zygosity, of a locus is deter-
mined either by minimum Akaike information criterion (AIC)
amongst GMMs with number of components ranging from
1 to the maximum number of alleles given or given by the
number of maxima detected in the kernel density estimate. By
default, HMMSTR assumes a diploid sample and the max-
imum number of alleles called is set to 2, however this is a
customizable parameter in HMMSTR. 

Plasmid constructs and benchmarking 

Four sets of plasmids were constructed using a pcDNA3.1
backbone that contained distinct motifs (AAAA G, AA GGG,
GGGGC, and CGG) and two to five motif copy numbers
( Supplemental Table S1 ). The plasmids were restriction en-

https://github.com/pysam-developers/pysam
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
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zyme digested, pooled based on motif, and sequenced as de-
scribed in Mumm et al ( 27 ) using ONT R9.4.1 Flongle flow
cells and SQK-LSK110 kit. Next, the data was basecalled with
Guppy 5.0.13. Supplemental Table S1 lists the specific motifs,
copy number, and restriction enzymes used for the digestion
reactions for each plasmid sequenced. HMMSTR was run on
all constructs using 200bp flanking sequence from each back-
bone as prefix and suffix sequences, the expected number of
peaks as max_peaks parameter and either GMM or KDE as
the preferred peak calling method based on the noise level
of each construct (e.g. KDE was used for CGG plasmid con-
structs). 

To benchmark Straglr on the plasmid sets, all reads were
aligned to the corresponding backbone sequence with the
shortest repeat count (e.g. AAAAG plasmid reads were aligned
to the 16 AAAAG plasmid backbone sequence) and the co-
ordinates for the repeats were calculated from the backbone
sequences. Straglr was then run with the resulting bam files
with each plasmid backbone as the reference genome and
max_num_clusters equal to the expected number of peaks.
Both Straglr and HMMSTR output two genotype call files,
one corresponding to the final genotype call for a given target
and one recording genotype calls per supporting read. Here, fi-
nal copy number calls used to compare HMMSTR and Straglr
accuracy are with respect to the final, per-target, Straglr geno-
type call. Since Straglr uses TandemRepeatFinder (TRF) to call
repeat copy numbers, the per-read copy numbers are reported
with respect to the motif reported by TRF for a given read.
This results in heterogeneous motif lengths across the reads re-
ported. To account for this in our visualization of the per-read
copy number distribution for Straglr, Supplementary Figure S2
shows the distribution of per-read repeat lengths reported by
Straglr divided by the expected, underlying, motif length in the
given plasmid construct. 

WGS benchmarking pipeline 

We started all benchmarking set construction from the TR set
defined by English et al. ( 1 ) which standardizes TR coordi-
nates in the reference genome and annotates hg38 TR calls
with fields such as: ‘ovl_flag’, which categorizes TR annota-
tion based on the nature of their overlapping annotations ac-
cording to TR Finder; ‘n_subregions’, which designates how
many subregions exist within a TR annotation; ‘n_annos’,
which designates the number of annotations remained af-
ter filtering redundant annotations; and ‘mu_purity’, which
describes the percent match between copies and reflects the
degree of unbroken repeat units on average across annota-
tions (in the case of multiple annotations for the same region)
( 28 ,29 ). The annotated bed file for hg38 and a full descrip-
tion of these fields can be on github here: https://github.com/
ACEnglish/ adotto/ . 

To decrease ambiguity in interpreting results from tools that
may treat more complex TR regions differently in terms of
copy number calling, we selected regions successively by the
following flags that resulted in the number of regions, respec-
tively: 

(1) Full TR set: 1.78 M regions 
(2) Simple TR annotations (‘ovl_flag’ = 0 × 1): 1.2 M re-

gions 
(3) TRs with only 1 annotation filtered (n_filtered = 1): 411

323 regions 
(4) TRs with only 1 annotation (‘n_annos’ = 1): 325 653 

regions 
(5) Over 80% purity with respect to the reference genome 

(‘mu_purity’ > 80): 324 779 regions 

We assess accuracy metrics based on copy numbers 
from a PacBio HiFi assembly from the Human Genome 
Structural Variation Consortium (HGSVC) ( https://ftp. 
1000genomes.ebi.ac.uk/ vol1/ ftp/ data _ collections/ HGSVC2/ 
working/20200417 _ Marschall-Eichler _ NBT _ hap-assm/). 
Assembly genotypes were found by aligning the 2000-bp 

flanking sequence using Mappy to each assembly haplotype 
followed by copy number determination using TRF. Regions 
were retained in the benchmark set if they met the following 
conditions in assessing assembly copy numbers: 

• Both 2000-bp flanking sequences aligned to both assem- 
bly haplotypes with mapq score of 60 such that only 
unique mappings were kept. 

• The alignments to a given region were in the correct ori- 
entation with respect to the assembly strand. 

• The reference motif according to our starting annota- 
tions was recovered by TRF when assessing copy number 
from the assembly. 

This procedure recovered genotypes for 187 149 regions 
from our starting set. To note, our assembly genotyping proce- 
dure requires all regions we benchmark against to be reference 
motifs in GM12878. 

For our accuracy assessment, we then divided these regions 
to include only homozygous and heterozygous regions for in- 
dependent assessment. Regions were considered homozygous 
if the copy numbers in the assembly were equal across hap- 
lotypes and confidently heterozygous if the region had over a 
two-copy difference. The final benchmarking set numbers are 
as follows: 

• 4237 heterozygous regions. 
• 168 568 total homozygous regions. 

We chose to only include homozygous regions from chro- 
mosome 1 for the sake of the runtime of both HMMSTR and 

RepeatHMM. This resulted in 15 224 homozygous regions.
The following criteria were used for inclusion of regions in 

accuracy assessment: 

• All tools must successfully return a non-null genotype 
for a given region. 

• All tools must call the genotype with respect to motifs 
with the same length as the reference genome. 

Exact numbers for the number of regions called by each tool 
and the number of motifs called as a different length than the 
reference genome by Straglr can be found in Supplemental 
Tables S2 and S3 . 

GM12878 WGS benchmarking datasets 
Both the GM12878 ONT WGS dataset ( https: 
// github.com/ nanopore- wgs- consortium/ NA12878/ blob/ 
master/Genome.md ) and the PacBio CCS WGS dataset 
( https:// www.ncbi.nlm.nih.gov/ bioproject/ PRJNA540705 ) 
were downloaded. Reads overlapping the starting TR bench- 
marking set were then extracted using bedtools intersect. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://github.com/ACEnglish/adotto/
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/working/20200417_Marschall-Eichler_NBT_hap-assm/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/Genome.md
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA540705
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MMSTR, Straglr, and RepeatHMM benchmarks 
MMSTR was run on the GM12878 benchmarking sets in
ith –mapq_cutoff 60 and –discard_outliers on the respective
am input file and with –mode corresponding to the given
ataset (ONT or PacBio dataset). Since HMMSTR returns al-
ele copy number calls with respect to both the mode and the
edian of a given cluster, the median call was used for all
M12878 benchmarking analyses. Straglr 1.41 was run on

he same input bam and bed files with default settings. Re-
eatHMM was run on a pattern (pa) file generated from the
ed file used for Straglr and HMMSTR using a custom script
nd was run in BAMinput mode with –SeqTech corresponding
o the dataset (PacBio or Nanopore). 

Both the full datasets used and the regions of interest had
pproximately 30 × coverage and the number of regions geno-
yped by each tool has been reported in Supplemental Tables 
2 and S3 for both GM12878 benchmarks. 

ssigning haplotype comparison sets 
he copy number calls per tool were sorted by size and la-
eled as heterozygous and homozygous for all benchmarking
esults. For regions identified as homozygous in the assem-
ly, all genotype calls (homozygous and heterozygous) were
ompared to the assembly allele. The Haplotype 2 (H2) com-
arison set includes all regions called homozygous as well as
he heterozygous calls closest to the assembly allele. The Hap-
otype 1 (H1) comparison set includes the allele farthest from
he assembly call for all regions that were called as heterozy-
ous. 

For regions identified as heterozygous in the assembly, all
alls were sorted such that H1 contains the smaller allele call
nd H2 contains the larger allele call for each region. All alle-
es were compared in this manner. In the case of homozygous
alls, the homozygous call was included in both H1 and H2. 

ssessing correlation, mean absolute difference, and percent
ygosity misclassification 

earson R correlation between the assembly TRF calls and
ool copy number calls was calculated for each of the sets ac-
ording to the sorting described above using scipy stats pear-
onr. Mean absolute difference (MD) was calculated for the
ame region sets as the correlation as follows: 

• sum(|(H1 call) - (H1 assembly call)|) / (total number of
regions in H1 set). 

• sum(|(H2 call) - (H2 assembly call)|) / (total number of
regions in H2 set). 

The homozygous and heterozygous misclassification rates
ere calculated for each tool using all regions called by a given

ool as follows: 

• sum(# of regions called as homozygous or
heterozygous) / (total # of regions in called in the
set). 

For misclassification rates, for a region to be assigned to
homozygous’, only one copy number was reported by the
ool. For a region to be assigned to ‘heterozygous’, more than
ne copy number was reported by the tool. 

HM13 benchmarking 

MMSTR and Straglr were run on regions defined by Fang
t al. ( 9 ). This set was 439 regions over 200 bp not within
500 bp of another STR. Basecalled reads (Guppy 5.0.7) were
downloaded from the telomere-to-telomere (T2T) consortium
https:// github.com/ marbl/ CHM13 . Reads were aligned to the
CHM13 (v2.0) using minimap2 (version 2.26). Reads were
then extracted from regions of interest using samtools. HMM-
STR was run with –discarded outliers, –mapq_cutoff 60 and
maximum peaks parameter of 1. Straglr was run with maxi-
mum peaks of 1 and default settings. 

Straglr failed to recover the target motif for 11 regions, and
these were discarded before the mean absolute difference cal-
culation. 

Downsampling analysis was performed by running sam-
tools view -s with fractions of 0.5, 0.33, 0.15, 0.10 and 0.05
for each chromosome. HMMSTR was then run with the pa-
rameters stated above. 

Runtime comparison analysis 

HMMSTR, Straglr and RepeatHMM were run on three 30x
downsampled sets of 400 100 and 10 STR targets from the
CHM13 dataset. All tools were run on the same input re-
gions using BAM or FASTQ files. HMMSTR and Straglr were
run with the same parameters as the CHM13 benchmark and
both HMMSTR and Straglr were run with 44 cpus; however,
RepeatHMM BAMInput does not support multithreading or
maximum allele number as a parameter and was thus run us-
ing default parameters. HMMSTR was additionally run with
the flanking_size parameter set to 30 to decrease the size of the
models for this runtime analysis. Accuracy for this model size
was assessed by running HMMSTR with the same parameters
and inputs as the GM12878 benchmarking with the addition
of flanking_size set to 30 ( Supplemental Tables S8 and S9 ).
Runtime and peak memory usage were measured using the
Linux time command on Intel(R) Xeon(R) CPU E5-2696 v4
@ 2.20GHz with 256GiB memory. 

Defining disease-associated regions 

The table outlining the known repeat expansions underlying
neurological disorders was created through the adaptation of
multiple literature sources combined with manual curation
from publicly available genomic data found at NCBI ( 2 ,30–
34 ). 

Defining normal, intermediate and pathogenic 

ranges 

Normal, intermediate and pathogenic repeat copy number
ranges for each disease-associated loci were defined according
to Chaisson et al. ( 34 ) or Stripy ( 33 ). The intermediate range
was defined as any copy number between the upper limit of
the normal range and the lower limit of the pathogenic range.

Swimlane plot genotype calls 

Disease-associated regions were genotyped with HMMSTR
with mapq_cutoff of 60 and default parameters with the ex-
ception of few loci which required 200-bp flanking sequence
for optimal target specificity (see github). The flanking_filter
flag was passed to discard reads with spurious sequence. 

Estimating softclip or non-through read repeat 
copy numbers with HMMSTR 

HMMSTR does not currently support integration of non-
spanning (softclip) reads as support to its genotype calls; how-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://github.com/marbl/CHM13
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
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ever, for diagnostic purposes, non-spanning reads containing
expansions are helpful for determining expansion status. We
estimate copy numbers from softclip reads as additional sup-
port for expansion calls, but these reads are not included in
the HMMSTR estimates. 

Softclip reads were identified using samtools view on sam-
ple bam files using samtools view. Reads spanning the entirety
of the repeat region per target were filtered based on HMM-
STR output such that only softclip reads were left. The softclip
reads per target were then converted to fasta format indepen-
dently. Softclip reads were kept separate per target to ensure
correct target assignment in the absence of adequate flanking
sequence on both sides of the given repeat. Softclip read repeat
copy numbers were found with HMMSTR with the following
parameters: 

• –flanking_size 60 

• –mode sr 
• –mapq_cutoff 0 

• –use_full_read 

where the prefix and suffix were made up of the concatena-
tion of the respective repeat motif. This circumvented the need
for the read to contain any flanking sequence not included in
the softclip reads. These parameters allow Mappy to align the
short (60 bp) flanking sequence inputs to the reads successfully
and ensure the full read is considered regardless of which re-
peat the input flanking sequence aligns to. The mapq cutoff
ensures the reads will not be thrown out due to multimapping
of the repetitive prefix and suffix inputs. The number of re-
peats found in the flanking sequence were added to the total
repeat copy number reported by HMMSTR. 

Calculating motif composition 

We define motif composition as the underlying k- mer sequence
making up a given TR, which may include a single or a mix
of motifs of the same or different k length that can be de-
composed into repeating units ( 1 , 20 , 35 ). uTR ( 36 ) was run
on reads from each allele per target independently. Motif de-
compositions were then processed using a custom script, and
composite motif compositions were constructed per individ-
ual allele as follows: the number of occurrences of a given mo-
tif per read was calculated; the median number of occurrences
of each motif was taken across all reads; the final composition
was calculated as the percent of the total median motif occur-
rences a given motif made up. 

Cell culture 

The GM12878 cell line was obtained from the NIGMS Hu-
man Genetic Cell Repository at the Coriell Institute for Med-
ical Research. GM12878 was cultured at 37 

◦C, 5% CO 2

in RPMI 1640 media with L-glutamine (11 875 093, Ther-
moFisher), and supplemented with 15% fetal bovine serum
(10 437 028, ThermoFisher) and 1X antimycotic–antibiotic
(15 240 112, ThermoFisher). Cells were regularly passed and
the media replenished every 3 days. 

Dermal fibroblasts were obtained from consenting patients
clinically diagnosed with CANVAS spectrum disorder and ge-
netically confirmed to possess biallelic RFC1 expansions and
iPSCs were cultured as described in Maltby et al.( 37 ). ALS
patient fibroblasts originated from a 66 yo male Michigan
Medicine patient and obtained as skin biopsy punch under
local IRB approval (HUM00030934). Tissues were obtained
from UV protected areas such as behind the knee / back of the 
upper leg using a 5.0 mm biopsy punch. The biopsy punch 

was cut to remove subcutaneous fat, and then pulverized and 

plated in a small dish containing Fibroblast Medium (DMEM,
10% (v / v) FBS, 1% (v / v) 100x NEAA, 1% (v / v) Pen / Strep,
1.5% (v / v) 1M HEPES) at 37 

◦C and 5% CO 2 until fibrob- 
lasts emerged from the tissue and were maintained at low pas- 
sage number prior to expanding and banking. 

Five post-mortem cerebellum samples were obtained from 

the University of Michigan Brain Bank with informed consent 
of the patients or their relatives and the approval of the local 
institutional review boards (IRB). 

Genomic DNA preparation 

High molecular weight genomic DNA (HMW gDNA) was ex- 
tracted from CANVAS patient derived iPSC cell pellets ( ∼30 

M cells) using the salting out method detailed in McDonald 

et al. ALS / FTD fibroblast and GM12878 LCL HMW gDNA 

was extracted using the Monarch® HMW DNA Extraction 

Kit for Cells and Blood (T3050L, NEB) following the man- 
ufacturers’ instructions. Brain tissue HMW gDNA was ex- 
tracted from 50mg sections using the Monarch® HMW DNA 

Tissue Extraction Kit (T3060L, NEB) following the manufac- 
turer’s protocol with the following changes in the lysis step.
Around 40 μL of 10 mg / mL Proteinase K (3 115 879 001,
Roche) was added to 580 μL of Tissue Lysis Buffer. The tissue 
was placed at 56 

◦C for 15 min on a ThermoMixer (Eppen- 
dorf) with 2000 rpm mixing then incubated at 56 

◦C for 30 

min without agitation. 

Guide selection 

Guide RNAs (sgRNAs) were designed according to 

ONT’s best practices for nCATS ( https://community. 
nanoporetech.com/ docs/ plan/ best _ practice/ targeted- 
amplification- free- dna- sequencing- using- crispr- cas/v/ 
eci _ s1014 _ v1 _ revf _ 11dec2018 ). In Panel 1, three guides 
were designed 2–5-kb upstream and downstream of 54 

targets. These 20-bp sgRNAs guides were chosen using 
a pipeline consisting of command line ChopChop and 

CRISPRon ( 38 ,39 ). The nanopore enrichment model was 
used with ChopChop, where we specified hg38 regions 
2–5-kb upstream and downstream of the disease-associated 

TR target. The candidate guides were then filtered based on 

strand for nCATs directionality and further scored using an 

in-house adaption of CRISPRon. 
We then inserted the 20bp sgRNA guide into the following 

template for pooled amplification and transcription based on 

Gilpatrick et al. ( 40 ). 
5 

′ -T AA T A CGA CTCA CT A T AG -*20nt-seq*- GTTTT AGA 

GCT AGAAAT AGCAAGTT AAAA TAAGGCTAGTCCGTT 

ATC AACTTGAAAAAGTGGC ACCGAGTCGGTGCTTTT 

In subsequent panel iterations (Panel 2 and 3), guides 
were added for additional targets and removed for high off- 
targeting ( Supplementary Tables S11 –S16 ). 

Guide preparation 

The oligo pool from TWIST Biosciences was resuspended to 

1ng / μL and 1ng was used for amplification with the primers 
below according to manufacturer instructions with the fol- 
lowing PCR conditions: PCR conditions: 95 

◦C 3 min, 20 cy- 
cles of 98 

◦C 20 s, 65 

◦C 15 s and 72 

◦C 15 s, 72 

◦C 10 min and
◦

https://community.nanoporetech.com/docs/plan/best_practice/targeted-amplification-free-dna-sequencing-using-crispr-cas/v/eci_s1014_v1_revf_11dec2018
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1201#supplementary-data
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T7 anchored fwd (5 

′ -CGCGCGT AA TACGACTCACTA T
G-3 

′ ) 
T7 rev (5 

′ -AA GCA CCGA CTCGGTGCC-3 

′ ) 
The product of this reaction (24 μL) was then used as input

or an 8 × reaction in a second round of amplification in an
ight-tube strip with the same PCR conditions. 

The final amplification product was pooled from the tube
trip and cleaned up using the QIAquick PCR Purification kit
28 104, Qiagen) and 500 ng was used for in vitro transcrip-
ion using the NEB HiScribe T7 RNA synthesis kit (E2040S,
EB) according to kit instructions. The sgRNA was purified
sing a Trizol / chloroform clean-up followed by ethanol pre-
ipitation, as detailed in McDonald et al. 

ibrary preparation 

CATS library preparation was performed following McDon-
ld et al. ( 41 ) with adaptations for LSK114 and pore R10.4.1
hemistry. First, 7.5 ug (or 30 ul of gDNA at a concen-
ration greater than 100 ng / ul) was dephosphorylated in a
0 μL reaction with 6 μL Quick CIP (M0525S, NEB) and
 μL 10X rCutSmart buffer (B7204S, NEB). This reaction
as inverted and gently tapped to mix and then incubated

t 37 

◦C for 30 min, followed by 2-min heat inactivation at
0 

◦C. 
The Cas9 ribonucleoprotein (RNP) was formed by combin-

ng 850ng of in vitro transcribed guide RNA pool, 1 μL of a
:5 dilution of Alt-R S.p .Cas9 Nuclease V3 (1 081 058, IDT)
r Alt-R S.p .HiFi Cas9 Nuclease V3 (1 081 060, IDT) and
X rCutSmart buffer (B7204S, NEB) in a total of 30 μL. This
eaction was incubated at room temperature for 20 min. 

Next both the prepped gDNA and RNP are placed on ice
efore being combined. Around 1 μL of 10mMol dATP and
.5 μL of Taq DNA Polymerase (M0273S, NEB) was added
o the cut reaction and inverted and gently tapped to mix.
his reaction is then incubated at 37 

◦C for 30 min for Cas9
utting and brought to 75 

◦C for a-tailing. CANVAS samples
ere additionally treated with 2 ul of thermolabile Proteinase
 (P8111S) for 15 min at 37 

◦C, followed by heat inactivation
t 55 

◦C. 
For adapter ligation, the cut reaction is transferred to a 1.5
L tube. We then added 5 μL T4 DNA ligase (M0202M,
EB) and 5 μL ONT LSK114 Ligation Adapter (LA; SQK-
SK114, ONT). This reaction is inverted to mix and incu-
ated at room temperature for 20 min with rotation. Follow-
ng ligation, we add 1 volume of 1X TrisEDTA (TE) and invert
o mix. Next 0.3X Ampure beads (SQK-LSK114, ONT) are
dded and incubated for 5 min with rotation followed by 5
in sitting at room temperature without rotation. The beads

re then washed twice with 150 μL Long Fragment Buffer
LFB; SQK-LSK114, ONT) followed by incubation with 20–
0 μL Elution Buffer (EB; SQK-LSK114, ONT) at 37 

◦C for
0 min. Finally, we loaded the R10.4.1 MinION flow cell fol-
owing the ONT protocol using 12 μL of the library and se-
uenced for 72 h. 

CATs data processing 

NT targeted sequencing data was basecalled and aligned us-
ng Dorado 0.6.0 using the super accuracy model with CG
ethylation calling. 
Results 

To address the current need for comprehensive screening of
disease-associated TR genotypes from ONT data, we first de-
veloped a TR copy number caller, HMMSTR, which accounts
for read level ONT-specific error profiles as a companion
bioinformatic tool for a targeted sequencing panel targeting
60 loci known or suspected of repeat expansion. We bench-
mark HMMSTR against four repeat-containing plasmid con-
structs as well as two assemblies and compare its performance
against current signal- and sequence-based methods compati-
ble with targeted genotyping. Further, we demonstrate our se-
quencing strategy’s performance across three panels in a con-
trol cell line and apply it to samples from nine individuals with
either cerebellar ataxia, neuropathy, and vestibular areflexia
syndrome (CANVAS) or ALS / FTD. Using this strategy, we are
able to genotype disease-associated expansions at previously
uncharacterized loci in these individuals. 

A modified profile HMM for TR genotype 

determination from nanopore-targeted sequencing 

reads 

HMMSTR is optimized for targeted sequencing data and, as
such, it assumes a population of on-target reads which contain
2–5 kb of sequence flanking the target. HMMSTR takes base-
called read data and performs local alignment of unique flank-
ing sequences to assign reads to the most likely target. Previous
work as well as our model parameter estimation (‘Materials
and methods’) have shown that there is a bias in substitution
errors in nanopore data such that purines are more likely to be
miscalled as other purines and vice versa for pyrimidines ( 10 ).
Thus, because substitution errors are not symmetrical with
respect to strand, HMMSTR constructs two, strand-specific,
models per target that reflect this bias and passes assigned
reads to the corresponding model. 

Similar to previous HMM-based TR callers, such as
STRique ( 14 ), which uses raw nanopore signal data (fast5),
and RepeatHMM ( 42 ), which uses basecalled data, HMM-
STR uses a modified profile HMM for estimating repeat
lengths. In contrast to these methods, however, HMMSTR
alone models the unique flanking sequence as basecalled data
for a given target and a single copy of the expected repeat mo-
tif (Figure 1 A, ‘Materials and methods’). This model structure
allows for fitting of the flanking region to the repeat sequence
and has proven successful in other applications. 

HMMSTR further utilizes a modified Viterbi algorithm that
labels the most likely positions of insertions and deletions be-
fore calculating the copy number for a given read. Previous
HMM based TR callers have addressed deletion errors in var-
ious ways, including encoding deletion states with the tran-
sition and emission probabilities of the neighboring match
state ( 42 ) and the use of silent states ( 14 ). Our Viterbi im-
plementation leverages similar logic to silent states such that
the transition to a deletion state does not require an emis-
sion symbol and non-emitting state probabilities are calcu-
lated separately from emitting states (‘Materials and methods’
section). 

Finally, once the repeat copy numbers are calculated across
all reads and targets, allele copy numbers are called for each
target using either a Gaussian mixture model or KDE (‘Mate-
rials and methods’ section). 
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Benchmarking HMMSTR genotype calls 

To assess the accuracy of HMMSTR, we benchmark against
three ground truth sets: four repeat expansion plasmid con-
structs with defined expansion lengths, a well-annotated
PacBio HiFi diploid assembly from the HGSVC ( 43 ), and the
haploid CHM13 reference genome from the T2T project ( 44 )

We compare the HMMSTR benchmarking results to four
additional TR callers compatible with targeted genotyp-
ing: Straglr ( 17 ), RepeatHMM ( 42 ), DeepRepeat ( 9 ), and
Strique ( 14 ). However, we primarily focus our benchmark
against Straglr as it is a comparable sequence-based long-
read genotyper that is currently utilized by Oxford Nanopore
in their EPI2ME STR expansion workflow ( https://epi2me.
nanoporetech.com/). Additionally, we include comparison to
RepeatHMM in our GM12878 comparisons because it is also
a sequence-based caller which shares a similar model architec-
ture; however, we exclude it from our plasmid benchmark be-
cause it does not allow for multi-allelic genotyping. DeepRe-
peat and Strique, two targeted methods that call TRs directly
from ONT signal data, were not included in the GM12878
benchmark due to the storage and runtime limitations of the
signal data ( 9 ). 

Plasmid construct benchmark 

We ran HMMSTR on four plasmid constructs with variable
repeat motif and copy number inserts ranging from 16 to
153 copies, including plasmids with AAAAG (16, 31 and 61
copies), AAGGG (16, 31 and 61 copies), GGGGC (21 and 41
copies) and CGG motifs (20, 39, 77, 115 and 153 copies). We
show high concordance with all expected repeat copy num-
bers with a mean absolute difference of 1.39 copies and stan-
dard error of 0.675 per allele across all constructs (Figure 1 B,
Supplemental Figure S1 ). We observe moderate heterogene-
ity in constructs, which is likely due to repeat instability in
bacterial culture. Because both HMMSTR and Straglr allow
for genotyping of multiple alleles, we also ran Straglr on all
plasmid constructs and found that it consistently underesti-
mated the repeat insert sizes with a mean absolute difference
of 4.24 copies with a standard error of 0.895 across all alle-
les ( Supplemental Figure S2 ). Straglr failed to detect the largest
plasmid insert in the CGG plasmid construct, and this estimate
was not included in the mean absolute difference or standard
error calculations. Overall, HMMSTR performs with high ac-
curacy on nanopore sequenced plasmid constructs with vari-
able number of repeat inserts. 

GM12878 benchmarking 
We selected a subset of TR regions from a gold standard set
from English et al. ( 1 ) to only include simple TRs, that is, TRs
with a single repeat motif that had no overlap with other an-
notated TRs and over 80% purity. In this benchmarking, only
reference motifs were used as inputs and the reference motif
must have been detected in the assembly to be included in our
truth set (see ‘Materials and methods’ section for details). 

Benchmarking homozygous genotype calls 
We queried a total of 15 224 regions identified as homozygous
by TRF in the assembly from chromosome 1 in the GM12878
ONT ( 45 ) and PacBio CCS WGS datasets ( 46 ). We ran HMM-
STR, Straglr ( 17 ) and RepeatHMM ( 42 ) with reference mo-
tif input on all regions. HMMSTR and Straglr successfully
genotyped the majority of queried regions for the ONT and
PacBio datasets; however, RepeatHMM failed to call over half 
of these regions in both datasets, which decreased the num- 
ber of total regions we compare in this analysis (Figure 2 ).
Furthermore, although Straglr accepts target repeat motifs in 

its targeted mode, it can override these motifs and call copy 
numbers relative to the motif called by TRF, which may dif- 
fer in length. This is problematic in copy number interpreta- 
tion and consequently all regions where Straglr called a motif 
with different length than that of the target motif were dis- 
carded. In this homozygous benchmark, 477 regions were dis- 
carded from the ONT set and 1126 regions were discarded 

from the PacBio set due to discordant motif calls described 

above ( Supplemental Table S2 ). 
In homozygous regions, we observe HMMSTR performs 

comparably to Straglr in terms of Pearson R correlation in the 
ONT dataset (over 0.97) and both outperform RepeatHMM 

in both haplotype comparison sets (0.92 and 0.94 in H1 

and H2, respectively) (Figure 2 , Supplemental Figure S3 ).
All three tools share high correlation with assembly calls in 

the PacBio dataset ( Supplemental Figure S4 , Supplemental 
Table S4 ). In terms of specificity in zygosity calls, Straglr calls 
the fewest number of homozygous regions heterozygous in 

the ONT dataset at a rate of 0.28% compared to HMM- 
STR and RepeatHMM which miscall homozygotes at rates 
of 4.4% and 17.16% respectively. Misclassification rates in 

the PacBio dataset follow this trend at lower rates across all 
tools ( Supplemental Table S4 ). HMMSTR achieves the lowest 
mean absolute difference from assembly copy number calls 
across all haplotype comparison sets and datasets compared 

to Straglr and RepeatHMM (Figure 2 , Supplemental Table 
S4 ). 

Overall, while both HMMSTR and Straglr have compa- 
rable correlation with the assembly in homozygous regions,
HMMSTR consistently shows lower mean absolute difference 
across the same regions in both ONT and PacBio test datasets.

Benchmarking heterozygous genotype calls 
To validate HMMSTR heterozygous calls, we identified a set 
of 4237 heterozygous regions which have at least a three copy 
difference between alleles in the GM12878 PacBio HiFi as- 
sembly (Methods). All tools called over 88% of regions suc- 
cessfully in the ONT set (Figure 3 ) and over 75% in the PacBio 

dataset ( Supplemental Table S5 ). Straglr called 58 and 108 re- 
gions as motifs of differing length from the input that was 
discarded from this analysis ( Supplemental Table S3 ). 

Figure 3 shows that in the ONT dataset, HMMSTR out- 
performs both Straglr and RepeatHMM in terms of corre- 
lation in the H1 comparison set (0.98 versus 0.95) and H2 

comparison set (0.98 versus 0.96) respectively as well as in 

both mean absolute difference and heterozygous misclassifi- 
cation rate (Figure 3 , Supplemental Figure S5 ). While all tools 
had comparable, high, correlations to the assembly in the 
PacBio dataset, HMMSTR maintained both lower mean ab- 
solute differences and the lowest number of regions miscalled 

homozygous across both sequencing technologies (Figure 3 ,
Supplemental Table S5 , Supplemental Figure S6 ). 

Another current challenge in characterizing TRs is the abil- 
ity to distinguish multiple alleles without additional genotype 
information. High resolution TR genotyping is invaluable for 
not only disease diagnosis but also for understanding dis- 
ease mechanisms. The ability to accurately genotype similarly 
sized alleles can aid in diagnosis of repeat expansions where 
the threshold between normal or intermediate and pathogenic 

https://epi2me.nanoporetech.com/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
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RepeatHMM

Pearson R Correlation

H1 H2

Straglr

Mean absolute difference

H1 H2

Number of 
misclassified 

regions

Overall
miscall

rate

Percent of targets
successfully 
genotyped

Tool

0.9712 0.6574

0.9421

0.9800

0.9833

0.9242

0.9735 0.8112

1.1007

0.8072

0.5222

1.2858

591

0.28%

4.4%

1,241

29

17.16%

99.64%

98.99%

49.52%

Figure 2. Chromosome 1 homozygous benchmarking. Statistics from benchmarking of HMMSTR, Straglr and RepeatHMM against regions identified as 
homozygous in the GM12878 HiFi assembly. This includes the percent of queried regions (15 224 total) with non-null genotypes returned, Pearson R 

correlation and mean absolute difference (MD) between copy number calls from the ONT GM12878 dataset and HiFi assembly TRF estimates, as well 
as the number of regions incorrectly called as heterozygous with respect to regions genotyped across all three tools. The overall miscall rate is with 
respect to all calls per tool. 

98.61%

99.41%

88.79%

HMMSTR

RepeatHMM

Pearson R Correlation

H1 H2

Straglr

Mean absolute difference

H1 H2

Overall
miscall

rate

Percent of targets
successfully 
genotyped

Tool

0.9753

0.9480

0.9684

0.9843

0.9917

0.9589

2.4886

3.8692

3.4420

2.4753

3.7107

3.6056

37.36%

96.42%

59.89%

Figure 3. Heterozygous benchmarking. Statistics from benchmarking of HMMSTR, Straglr and RepeatHMM against regions identified as heterozygous 
in the GM12878 HiFi assembly, including the percent of queried regions (4237 total) with non-null genotypes returned as well as Pearson R correlation 
and mean absolute difference (MD) between copy number calls from the ONT GM12878 dataset and HiFi assembly TRF estimates. The overall miscall 
rate is with respect to all calls per tool. 
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ength is small, as well as aid in improving ill defined thresh-
lds that may be significant to clinical outcomes. Additionally,
igh resolution calls allow for more precise heritability anal-
sis where TR haplotypes can be traced through generations
nd alleles that undergo copy number changes can be better
ifferentiated from similarly sized alleles. 
For these reasons, we compare which heterozygous regions

re correctly called heterozygous across all tools. Of the re-
ions successfully called by all three tools in the ONT dataset,
he largest intersection was between the two HMM-based
ethods with 1130 regions called correctly heterozygous by
oth HMMSTR and RepeatHMM followed by 1110 regions
alled heterozygous only by HMMSTR (Figure 4 A). These re-
ults are mirrored in the PacBio dataset (Figure 4 B). Note-
ly, Chiu et al. state that Straglr resolves heterozygous TR

oci when alleles differ in size by over 100bp. In this het-
rozygous benchmark, only 80 out of 4237 regions (1.89%)
ave a difference in allele size of greater than 100 bp, which
ay contribute to the high misclassification percentages for

his tool. We also assessed heterozygous call concordance
mong regions with allele size difference of over and un-
er 100 bp ( Supplemental Figures S7 and S8 ). Indeed, re-
ions with greater than 100-bp difference between alleles
howed higher heterozygous call concordance across all three
ools ( Supplemental Figure S7 A and B, 37.93% in ONT and
3.33% in PacBio) than regions with less than 100-bp differ-
nce between alleles ( Supplemental Figure S8 A and B, 1.25%
n both ONT and PacBio). 
Since the zygosity of a TR region should be the same across
both test datasets as well as the assembly, we compared the
concordance of heterozygous calls across these sets per tool
for all regions called in both the ONT and PacBio datasets.
We find that HMMSTR has the largest percent overlap in
heterozygous calls across all three datasets at 59.64% com-
pared to 19.12% and 2.86% overlap from regions called by
RepeatHMM and Straglr, respectively (Figure 4 C–E). In terms
of regions with over 100 bp between alleles, HMMSTR main-
tained a higher overlap in regions called heterozygous across
both ONT and PacBio datasets (75.34%, Supplemental 
Figure S7 C) compared to both Straglr (66.23%, Supplemental 
Figure S7 D) and RepeatHMM (16.67%, Supplemental Figure 
S7 E). In contrast, of regions with allele size difference of
under 100 bp, HMMSTR called 59.36%, while Straglr
called 1.68%, and RepeatHMM called 19.15% of regions
correctly heterozygous across both sequencing technologies
( Supplemental Figure S8 C–E). 

Overall, HMMSTR correctly calls a greater percentage of
heterozygous regions heterozygous across both ONT and
PacBio datasets for regions with alleles of both small and rel-
atively large base pair difference compared to Straglr and Re-
peatHMM. While all three tools tested showed high corre-
lation to the GM12878 assembly, HMMSTR achieves more
consistent correlation across both alleles in heterozygous re-
gions and returns reference, repeat copy numbers with the
lowest mean absolute difference across all sets ( Supplemental 
Tables S6 and S7 ). 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
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Figure 4. Heterozygous call concordance with the assembly across tools. ( A and B ) Upset plots of all regions successfully genotyped by HMMSTR, 
Straglr and RepeatHMM showing the intersection of regions called as heterozygous in the ( A ) ONT GM12878 dataset and ( B ) PacBio GM12878 dataset. 
( C , D and E ) Venn diagrams of all regions called as heterozygous by each tool across both the ONT and PacBio datasets and the assembly by ( C ) 
HMMSTR, ( D ) Straglr and ( E ) RepeatHMM. 
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CHM13 large STR benchmark 

Next, we benchmarked HMMSTR and Straglr against a pre-
viously published set of large, STR regions (over 200 bp in
length) from the CHM13 reference genome ( 9 ). CHM13 is
known to be effectively haploid ( 44 ), thus HMMSTR and
Straglr were run with a maximum allele count of one. HMM-
STR reports genotypes based on either the mode or median
of a given per-read copy number distribution. Here we report
mean absolute copy number difference results from both calls
separately. Further, Straglr called 11 regions with motifs of
differing length than CHM13 annotations that were thus dis-
carded from the mean absolute difference calculation. 

We show HMMSTR calls CHM13 STRs with high accu-
racy (1.1 mean absolute copy difference from mode call, Fig-
ure 5 A, 1.45 from median call, Supplemental Figure S9 A) and
Straglr calls the set with a mean absolute difference of 3.77
( Supplemental Figure S9 B). This is compared to the previ-
ously benchmarked callers on this dataset: DeepRepeat ( 9 ),
RepeatHMM ( 42 ) and STRique ( 14 ) with 3.56, 4.47 and 11.2
average absolute differences, respectively ( 9 ). The authors of
this comparison note that they did not run either STRique or
DeepRepeat on the full 126 × dataset due to storage limita-
tions; however, we show that we retain lower absolute copy 
number difference in our downsampled set even at 5 × average 
coverage (2.90 average absolute difference from mode call,
1.87 from median call, Figure 5 B). HMMSTR not only al- 
lows for the use of basecalled read data, it outperforms both 

current signal-based and profile HMM-based methods at low 

coverage. 

Comparison of runtime 

To simulate targeted sequencing experiments, we ran HMM- 
STR, Straglr and RepeatHMM on three 30x downsampled 

STR sets from the CHM13 dataset to measure the effects of 
dataset size and target number on runtime ( Supplemental 
Figure S10 ). HMMSTR and Straglr were run with 44 threads; 
however, RepeatHMM BAMInput does not support multi- 
threading or maximum allele number as a parameter and 

was thus run using default parameters. By default, HMM- 
STR models are encoded with 100bp flanking each repeat 
of interest. This larger model size allows for fitting to TRs 
which may be situated within regions of similar sequence, such 

as various regions in our disease associated panel; however,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
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Figure 5. CHM13 HMMS TR B enchmark. ( A ) Av erage absolute difference between 439 long STR loci in CHM13 and HMMSTR mode calls from nanopore 
sequencing of CHM13. ( B ) Average absolute difference between CHM13 and HMMSTR median and mode calls from downsampled CHM13 nanopore 
dat aset (5x-10 0x a v erage co v erage). Error bars sho w standard error per co v erage tested. 

t  

s  

g  

f  

o  

i  

d  

a  

(
 

m  

f  

n  

g  

u  

u
 

s  

w  

t  

d  

t  

g  

d  

a  

i  

i  

S  

 

p  

p  

w

M

W  

t  

t  

p  

p  

t  

r  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkae1202/7925236 by U

niversity of M
ichigan user on 16 D

ecem
ber 2024
he Viterbi algorithm scales quadratically with the number of
tates in the model and thus this model size is not ideal for
enotyping at scale. Thus, here we include runtime analysis
or running HMMSTR with models encoding 100 and 30 bp
f flanking sequence. Further, we show that the 30-bp flank-
ng sequence model encoding results in little to no accuracy
ecrease in regions not nested within additional repeats, such
s those shown in the GM12878 and CHM13 benchmarking
 Supplemental Tables S8 and S9 ). 

We find that HMMSTR ( ∼2.5 s per region with 100-bp
odel, ∼0.4 s per region with 30-bp model) runs significantly

aster than RepeatHMM ( ∼14 s per region) across all target
umbers, with RepeatHMM scaling worse with increased tar-
et number while Straglr is ∼4 times faster than HMMSTR
sing the 30-bp model and ∼25 times faster than HMMSTR
sing the 100-bp model ( ∼0.1 s per region). 
When we compare HMMSTR and Straglr runtimes on a

ingle plasmid construct dataset, the AAAAG plasmid set,
hich has a very high read coverage of 137 006 ×, we find

hat the difference between Straglr and HMMSTR runtimes
ecreases (21 versus 25 min for Straglr and HMMSTR, respec-
ively) and that HMMSTR run with 30-bp flanking sequence
reatly outperforms Straglr (4 min). This is likely due to the
ifferences in how Straglr and HMMSTR parallelize targets
nd reads due to their respective use cases: HMMSTR prior-
tizes multithreading over read processing because it expects
nput from nCATs, with high coverage and fewer targets, while
traglr is optimized accessing many more targets in WGS data.

HMMSTR processes the 400 target set with under 1.5GB
eak memory usage when run with fasta file input. Tests were
erformed on Intel(R) Xeon(R) CPU E5-2696 v4 @ 2.20GHz
ith 256GiB memory. 

ultiplexed TR-targeted sequencing 

e next designed a set of flanking sgRNA guides targeting
he majority of known disease-associated TR loci obtained
hrough literature search ( 2 ,30–34 ). These guides can be am-
lified and transcribed in a pooled approach that offers a sim-
le and flexible multiplexed protocol. This set of guides was
hen used in the nCATSs approach to perform benchmark en-
ichments using a control sample with non-pathogenic repeat
copy numbers at all loci (see ‘Materials and methods’ section
for details). 

Using HMW genomic DNA (gDNA) from GM12878 lym-
phoblasts, we obtained an average coverage of 250 × across
54 targets (Panel 1, Figure 6 A). During guide optimization,
we designed an additional two panels (panels 2 and 3), where
we added disease-associated targets and switched to IDT HiFi
Cas9. This improved our on-target rates, where on-target is
defined as the number of reads spanning the target TR loci
divided by the total number of passing (Q > 9) reads (Figure
6 A, Supplemental Figures S11 and S12 A, Supplemental Table 
S10 ). 

Characterization of CANVAS patient-derived iPSCs 

After evaluating the targeted sequencing panel in a control
cell line, we applied panel 3 to three CANVAS patient-derived
iPSC lines which carry large biallelic expansions in RFC1
(P AT1, P AT3 and P AT4). The autosomal recessive CANVAS
expansion in intron two of RFC1 is highly heterogeneous and
multiple pathogenic and non-pathogenic alleles have been de-
scribed ( 20 ,47 ). While the reference, and most common allele,
at this locus is made of up to 400 copies of the ‘AAAAG’ mo-
tif, pathogenic expansions include ‘ AAGGG’, ‘ ACAGG’ and
‘AGGGC’ motifs which can exceed 5 kb in length ( 20 ,47 ).
Thus, long-read sequencing is particularly well suited to char-
acterizing this locus. 

Using the disease-associated panel to characterize these
three lines, we obtained an average of 142 ×, 117 × and 168 ×
read depth at our target repeat loci (Figure 6 , Supplemental 
Figures S12 B and S13 ). We observe biallelic ‘AAGGG’ expan-
sions at the CANVAS locus in all three samples, with PAT3
having alleles with 821 and 947 copies, PAT4 harboring 1095
and 1174 copies, and PAT1 with 375 and 1228 copies (Fig-
ure 6 B). In addition to spanning reads, we can also observe
the large repeat expansions directly in soft clipped alignments
and detect pathogenic length expansions in these fragmented
reads ( Supplemental Figure S14 ). 

In the PAT1 sample, we observe not only a biallelic ex-
pansion at RFC1 but also a pathogenic length expansion
at FGF14 of 319 copies of the uninterrupted ‘AAG’ motif
( Supplemental Figure S12 B). Interestingly, in PAT4, we also

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
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Figure 6. Targeted sequencing panel obtains high co v erage o v er disease-associated S TR. ( A ) Av erage read depth (log10 scale) at targets in 12 samples, 
including our control cell line GM12878, three CANVAS patient derived iPSC lines,five post-mortem cerebellum samples from individuals with ALS / FTD, 
and one ALS patient-derived fibroblast line. ( B ) Integrative Genomics Viewer image showing a 6.8-kb region excised with flanking guides at RFC1. We 
obtained 808 × read depth at this locus in the GM12878 control with no repeat expansion and 110 × and 114 × read depth in the CANVAS P A T3 and P A T4, 
both with large biallelic expansions. 
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observe two intermediate sized FGF14 expansions (146 and
211 copies) along with the biallelic RFC1 expansions. 

Survey of ALS / FTD tissue samples for pathogenic 

repeat expansions 

We next applied the 60 target panel (panel 3) to six samples
from individuals with neurodegenerative disease. A heterozy-
gous ‘GGGGCC’ repeat expansion in C9orf72 is the most
common genetic cause of ALS / FTD cases ( 48 ). Like the CAN-
VAS expansion, the length of the pathogenic, expanded allele
can exceed 5 kb while the CG rich repeat motif can make char-
acterization with amplification based methods more difficult
( 3 ,49 ). Normal copies of the hexanucleotide motif range from
3 to 24 while pathogenic expansions can exceed one thou-
sand copies ( 33,34 ,48 ). In addition, recent work has uncov-
ered additional repeat expansions in NIPA1 and ATXN2 in
individuals with ALS / FTD, suggesting potential pleiotropy in
pathogenesis ( 48 ). 

First, we used our method to characterize an ALS patient-
derived cell line with a known C9orf72 expansion. With
our targeted sequencing panel, we obtained high coverage at
the locus and characterized the heterozygous expansion with
HMMSTR. In this line, the pathogenic expanded allele con-
tained 972 copies of the motif and the normal allele was nine
copies (Figure 7 A). In addition, in this sample we observed
a heterozygous expansion in the RFC1 intron which causes
CANVAS. This expanded allele harbors 1487 copies of the
pathogenic ‘AAGGG’ motif and indicates this individual is a
carrier for CANVAS (Figure 7 B). 

Next, we genotyped five post-mortem cerebellum sam-
ples where we identified two heterozygous C9orf72 expan-
sions ( Supplemental Figures S14 –S16 ). Overall, due to HMW
gDNA quality, the tissue samples yielded lower coverage than
experiments using cell lines; however, we were able to success-
fully genotype most target loci. To investigate the possibility of
other expansion loci contributing to disease, we examined the
genotypes of these samples at the rest of the disease-associated
TR loci. We identified two additional interesting repeat ex-
pansions in these individuals ( Supplemental Figure S10 ). In
the sample from individual 198, in addition to an expanded
C9orf72 allele, we observed a heterozygous expansion in 

the spinocerebellar ataxia 31 (SCA31) associated repeat in 

BEAN1 . The pathogenic expansion at this locus is a non- 
reference, nested repeat expansion consisting of ‘ AAAA T’,
‘ AAGGT’ and ‘ AAGA T’ ( Supplemental Figure S15 A). In this 
sample, we obtained an inconclusive genotype with approxi- 
mately 528 copies of an ‘ AAAA T’, ‘ AAGA T’ or ‘ AA TGG’ mo- 
tif that was inconsistent in expanded reads. 

We also identified a potentially pathogenic expansion in 

individual 1033 at the familial adult myoclonic epilepsy 2 

(FAME2) associated locus in STARD7 ( Supplemental Figure 
S14 B). Like SCA31 there are pathogenic and non-pathogenic 
motifs. FAME loci are heterogeneous and several additional 
motifs have been identified at this locus across populations,
but the pathogenicity of some of these motifs is still unclear 
( 50 ). In this sample, we observed a 552 copy heterozygous 
expansion of the uncharacterized motif, ‘ AA T AC’. 

In addition to the expansions we identified in these sam- 
ples, we also observed a number of intermediate expansions 
as well as rare and non-reference alleles that would have been 

missed using short-read sequencing. Examples include large,
reference alleles at FAME loci, and a previously described rare,
complex allele at RFC1 ( Supplemental Figure S17 ) ( 51 ). 

Discussion 

Accurate genotyping is essential for understanding and diag- 
nosing disease-associated TR expansions. Here we establish 

a computational method designed for targeted sequencing,
HMMSTR, that outperforms both signal-based and sequence- 
based TR copy number callers and provide a targeted sequenc- 
ing panel for disease-associated TRs. To demonstrate HMM- 
STR’s performance, we benchmark against repeat constructs 
and assembly data and show high concordance across all sets 
for both ONT and PacBio HiFi datasets. 

Paired with targeted sequencing, HMMSTR’s sequence- 
based approach is efficient and requires fewer resources for 
storage than WGS or signal-based genotyping. We show 

HMMSTR outperforms these methods with the lowest mean 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
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Figure 7. Application of targeted sequencing panel and genotyping with HMMSTR to ALS / FTD samples. ( A ) Sample information and C9orf72 genotypes 
in five post-mortem cerebellum samples from individuals with ALS / FTD and one ALS patient-derived fibroblast line. Three samples carry one expanded 
C9orf72 hexanucleotide repeat allele. We additionally identified four other disease-associated expanded alleles. Patient 198 has a 536 copy number 
heterozygous, non-pathogenic repeat expansion in SCA31-associated BEAN1 . Patient 1033 carries an expanded copy of the STARD7 with 552 
non-reference motifs ( Supplemental Figure S11 B) and the ALS / FTD fibroblast line carries one pathogenic CANVAS allele. *non-pathogenic motif. † motif 
of unknown significance. ( B ) The swimlane plot shows the genotypes across 60 disease associated target loci for the ALS / FTD fibroblast line. All 
markers and ranges are displayed in log10 scale while the x -axis reflects the absolute copy number. Dots indicate repeat counts for each read and 
triangles show HMMSTR median calls, where blue markings correspond to normal allele sizes and red indicate pathogenic length reads and calls. Gray 
dots indicate outlier copy number calls. For each disease associated locus, the log10 copy number x -axis has been shaded to show the ranges of normal, 
intermediate, and pathogenic repeat copy numbers. For rows without shading, the ranges of normal and pathogenic lengths have not been described. 
Disease abbreviations ( y -axis) shown in green indicate HMMSTR call was in the normal range for both alleles, purple indicates one allele was in the 
pathogenic range, and black indicates missing data or no ranges a v ailable ( 33 , 34 ). 
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and PacBio CCS datasets in homozygous and heterozygous
regions as well as across repeat-plasmid constructs with high
coverage and up to five allele lengths. Although the accuracy
of ONT sequencing has improved significantly, sequencing er-
rors in low complexity regions still impede direct genotyping,
particularly at low coverage. HMMSTR models repeat errors
to address this and we show it calls repeat lengths at as low
as 5x coverage with high accuracy. 

We further show that HMMSTR accurately discriminates
between similarly sized, heterozygous repeats. Indeed, HMM-
STR has the highest level of agreement with heterozygous
GM12878 assembly regions in both the PacBio and ONT
test datasets and the greatest agreement between the two
data modalities. When we compare the regions called het-
erozygous across all three tools tested, we find that Re-
peatHMM and HMMSTR have the largest overlap and that
RepeatHMM calls heterozygous regions correctly at a higher
rate than Straglr. These results suggest that HMM-based
methods, which attempt to model technology-specific error
rates on a read level, have an increased ability to discern alle-
les compared to TRF-based Straglr at regions with small base
pair separation. Additionally, differences in peak calling and
clustering methods across the three tools may contribute to
the resolution of each tool’s zygosity calls. One of the main
differences between how HMMSTR calls zygosity compared
to other methods is that it chooses between peak calling with
KDE and a Gaussian mixture model (GMM) according to the
spread of the per-read repeat copy number distribution (‘Ma-
terials and methods’ section). This is compared to both Straglr
and RepeatHMM which both use a GMM to call alleles from
their repeat copy number data. This flexible zygosity call pre-
cision allows for increased genotype accuracy of both alleles
in heterozygous regions (Figure 3 ) without incorporation of
additional genotype information such as neighboring single
nucleotide polymorphisms or phase information. 

HMMSTR is optimized for targeted sequencing and as-
sumes an enrichment for reads corresponding to the target
loci. While HMMSTR’s use of local alignment allows for
reference-free analysis, it also introduces potential for mis-
assigning reads when there are a large number of off-target
reads or targets with similar flanking sequence. This limita-
tion is particularly relevant when attempting to run HMM-
STR on WGS data. To account for this and increase target
specificity in the analysis of WGS data, HMMSTR also al-
lows for target assignment directly from an aligned bam in-
put file. As some TRs are located within low-complexity re-
gions, by default HMMSTR constructs models encoding 100
bp of sequence flanking each target repeat allowing for high
specificity for repeats located in these regions. However, model
size can also be expanded or decreased to help with target
specificity at the cost of runtime and vice-versa. As shown in
Supplemental Tables S8 and S9 and our runtime analysis, de-
creasing the size of the model can result in significant runtime
speedups with minimal accuracy loss, particularly in simple
TRs not nested in low complexity regions. 

While one advantage of HMMSTR’s targeted approach
is its specificity and ability to account for errors based on
prior knowledge of target loci, challenges persist with tar-
geted models when considering the variability of some disease-
associated TRs. Previous studies have reported over 98%
of TRs have low sequence polymorphism ( 20 ), but multiple
disease-associated TRs carry non-reference motifs or complex
motif composition. Models constructed on reference motifs
generally obtain the same copy number as models constructed 

with pathogenic motifs due to the similarity in both length 

and base composition, as well as specificity of flanking se- 
quences. However, we do find that, in some expansion cases 
with non-reference motifs, HMMSTR may underestimate the 
copy number using a reference motif model (data not shown).
To prevent this shift in copy number due to non-reference mo- 
tif composition in the expansion cases described in our anal- 
ysis, HMMSTR was run with reference and pathogenic mo- 
tifs when applicable for this analysis. Alternatively, HMM- 
STR can be run with ‘N’ in the place of expected nucleotides 
for variable positions for targets with non-reference motifs 
(eg ‘AANNG’ for CANVAS) which mitigates this issue. Mo- 
tif composition can also be recovered in downstream analy- 
sis from the per-read repeat coordinates returned by HMM- 
STR given adequate coverage ( Supplemental Figure S17 ). In- 
tegration of alternate motifs into target models would po- 
tentially increase the efficiency and ease-of-use of genotyping 
these variable regions and future iterations of HMMSTR may 
incorporate these optimizations ( 20 ). 

Combined with HMMSTR, our pooled guide strategy for 
genotyping disease-associated TR expansions offers a simple,
flexible and accurate screening methods for interrogating a 
wide array of samples and targets. In addition, this method is 
highly scalable, as amplification and transcription of the pool 
can yield sufficient sgRNA for hundreds of samples. Since the 
design of Panel 3, recent work has identified and described ad- 
ditional disease-associated repeats and we aim to iteratively 
optimize our panel and add targets as necessary for compre- 
hensive screening ( 34 ,52 ). Moreover, as FDA approved treat- 
ments emerge for repeat expansion disorders and they become 
the subject of gene-targeting clinical trials, critical additional 
information related to polymorphic repeat structures and al- 
terations in surrounding sequence will prove critical for accu- 
rate management of therapeutic options. 

We successfully apply our targeted sequencing panel and 

genotyping to a variety of samples, including two patient 
groups. Using patient-derived lines and post-mortem cerebel- 
lum samples, we are able to genotype large, biallelic repeat 
expansions at the CANVAS locus in RFC1 and large, CG 

rich expansions in C9orf72 . The rate of co-occurrent repeat 
expansion in the samples we tested highlights the utility of 
this targeted panel approach. In two of the three CANVAS 
samples, we identified potentially pathogenic expansions in 

FGF14 , another common cause of late onset cerebellar ataxia 
with overlapping disease presentation ( 53 ,54 ). Few cases of 
SCA27B have been reported in CANVAS carriers ( 55 ); how- 
ever, to our knowledge this is the first reported biallelic RFC1 

and FGF14 expansion to date. In PAT4, we observe two in- 
termediate sized FGF14 expansions with biallelic RFC1 ex- 
pansions. Recent efforts to better characterize the FGF14 ex- 
pansion associated with SCA27B have suggested that biallelic,
intermediate, expansions where alleles do not exceed the full 
penetrance threshold of 300 copies may exhibit an additive ef- 
fect to determine penetrance ( 53 ,56 ). While investigation into 

the effects of these RFC1 and FGF14 co-expansions exceeds 
the scope of this current work, future application of our panel 
may elucidate if these co-occurences have an effect on disease 
etiology or presentation in affected individuals as well as aid 

in differential diagnosis of these two disorders. 
Multiple pathogenic and intermediate TR expansions have 

been identified in individuals with ALS / FTD with and without 
the C9orf72 expansion ( 48 ,57 ). The prevalence and signifi- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1202#supplementary-data
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ance of these co-occurrent and additional expansions is yet to
e determined, highlighting the importance of screening mul-
iple loci ( 48 ). In the ALS / FTD samples we analyzed, we iden-
ified several expanded and non-reference alleles at the panel
argets including in STARD7, BEAN1, RFC1 and DAB1 . Re-
ently, whole genome, long-read sequencing projects have un-
overed significant heterogeneity in both motif composition
nd size at these pentanucleotide repeat loci, as well as other
isease-associated TRs, across populations ( 20 ,58 ). 
Using this targeted panel we are able to efficiently and accu-

ately genotype these loci as well as rare and complex alleles
ith HMMSTR. This enables an increased power to inves-

igate and characterize a wide range of variation at disease-
ssociated TRs in both cases and controls. However, despite
ur ability to target our repeats of interest with high cover-
ge, some genotyping challenges remain. Though we observe
ery high coverage at guide cut sites with targeted sequencing,
e obtain fewer reads that span very large expansions. This

s consistent with other work and may be due to fragmen-
ation and secondary structure, particularly in samples with
athogenic motifs ( 15 ). 
In conclusion, we demonstrate the utility of our combined

argeted bioinformatic and sequencing strategy. By obtain-
ng high coverage and accurate genotypes across disease-
ssociated loci simultaneously, we are able to not only geno-
ype normal-length repeats and confirm pathogenic expan-
ions but also identify expansions at unexpected loci and co-
xpansions in samples from individuals with neurodegener-
tive conditions. This strategy holds promise for more eco-
omic and comprehensive diagnostics as well as further study
f the diversity at previously elusive TR loci. 
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