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The Somatic Mosaicism across Human Tissues Network*

From fertilization onwards, the cells of the human body acquire variations in their 
DNA sequence, known as somatic mutations. These postzygotic mutations arise from 
intrinsic errors in DNA replication and repair, as well as from exposure to mutagens. 
Somatic mutations have been implicated in some diseases, but a fundamental 
understanding of the frequency, type and patterns of mutations across healthy 
human tissues has been limited. This is primarily due to the small proportion of  
cells harbouring specific somatic variants within an individual, making them more 
challenging to detect than inherited variants. Here we describe the Somatic 
Mosaicism across Human Tissues Network, which aims to create a reference catalogue 
of somatic mutations and their clonal patterns across 19 different tissue sites from  
150 non-diseased donors and develop new technologies and computational tools to 
detect somatic mutations and assess their phenotypic consequences, including clonal 
expansions. This strategy enables a comprehensive examination of the mutational 
landscape across the human body, and provides a comparison baseline for somatic 
mutation in diseases. This will lead to a deep understanding of somatic mutations and 
clonal expansions across the lifespan, as well as their roles in health, in ageing and,  
by comparison, in diseases.

Genetic diversity within the human population has been well described. 
The Human Genome Project resulted in the first near-complete map-
ping of the human DNA sequence1, and was followed by large-scale 
projects, such as the 1,000 Genomes Project2 and the Pangenome 
project3, that mapped the genetic diversity between individuals and 
populations. Now, there is growing recognition that extensive genetic 
variation exists within individuals among different tissues and cells. 
Two decades after completion of the first draft human genome, the 
Somatic Mosaicism across Human Tissues (SMaHT) Network plans 
to map the genetic diversity across different tissues and cells within 
individuals.

From fertilization onwards, the cells of the human body continu-
ously experience damage to their genome, either from intrinsic causes 
or from exposure to mutagens4–9. Although the vast majority of DNA 

damage is repaired, and the genome is replicated with extremely high 
fidelity, cells steadily acquire somatic mutations throughout life. All 
cells within an individual harbour somatic mutation, but any given 
mutation is present in only a subset of the cells, or even in single cells. 
Hence, somatic mutations are often described as mosaic10,11.

The detection of somatic mutations is challenging. In contrast to 
inherited variants, somatic mutations only exist in small and variable 
proportions of cells, ranging from embryonic mutations present 
in most cells to mutations present in just a single cell (Fig. 1a). This 
challenge is exacerbated by the introduction of artefacts and errors 
resembling low-frequency mutations during DNA library preparation 
and sequencing12. Current short-read sequencing technologies limit 
detection of mutations in repetitive regions of the genome and are 
likely to be less suitable for detection of somatic structural variations.
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Although most somatic mutations are probably functionally 
neutral13, some can profoundly alter the phenotype of a cell and are 
implicated in a wide variety of diseases. Many insights have come 
from sequencing the genomes of cancers14, the best-known exam-
ple of disease arising from somatic mutation, but mutagenesis in 
tumours is often accelerated, and normal mutational patterns are 

distorted by genome instability. More recently, mapping the pat-
terns of somatic mutations in normal tissues, exemplified by efforts 
of the Brain Somatic Mosaicism Network and other studies3–6,15–26, 
has identified a role for somatic mutations in developmental syn-
dromes, neurological diseases and inflammatory disorders27–39. 
Despite these efforts, there is currently no comprehensive reference 
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Fig. 1 | Somatic mutations, causes and patterns. a, Schematic comparison 
between inherited variants, an early somatic mutation and a late somatic 
mutation. b, Overview of causes and types of somatic mutations.  
EN, endonuclease; ME, mobile element; ORF, open reading frame; RT, reverse 
transcriptase; ssDNA, single-stranded DNA. c, Overview of the reported 
mutation rates of somatic SNV across developmental stages and tissues.  
Data of first cell divisions6,7,59 and later cell divisions6,7,59 are SNVs per cell  

per division. Data from fetal development of the early central nervous system 
(CNS)9 and placenta62 are SNVs per cell per day. Adult data are SNVs per year  
and estimated for seminiferous tubules48, haematopoietic stem cells26,52,144,  
B lymphocytes52, neurons63,145, T lymphocytes52, bronchial epithelium53,  
gastric epithelium146, endometrial epithelium79, hepatocytes19, small bowel 
epithelium19,115, colorectal epithelium19,24,29 and cardiomyocytes49. ZGA, zygotic 
genome activation.
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dataset of somatic mosaicism across many tissues of a large pool  
of donors.

In this Perspective article, we describe the SMaHT Network, initi-
ated by the NIH Common Fund, which aims to generate a reference 
catalogue of somatic variation from 150 donors in 19 non-diseased 
tissue sites. To advance the field, the SMaHT Network will perform a 
comprehensive discovery and analysis of all types of somatic muta-
tions at an unprecedented scale: the joint analysis of mosaicism across 
many tissues per donor; the robust discovery of structural variants 
(SVs) through long-read sequencing and donor-specific assemblies; 
and the widespread and robust application of ultrasensitive sequencing 
technologies, such as duplex sequencing, across sequencing centres. 
Furthermore, beyond applying established sequencing assays at scale, 
the SMaHT Network has a strong emphasis on tool and technological 
development to enable the next generation of somatic mutation stud-
ies. Before describing the network goals in detail, we briefly review the 
current knowledge about somatic mutations in health and disease, as 
well as the technical challenges in detection of mutations. A large part 
of the SMaHT Network will focus on the development of technolo-
gies and computational tools to improve the detection of all types of 
somatic variation.

 
Somatic mutations in healthy tissues
Throughout the human lifespan, from conception to death, cells 
acquire mutations in their DNA6–9,40 (Fig. 1b). These somatic mutations 
can be the consequence of erroneous repair of damaged DNA bases 
or DNA strand breaks, errors during replication, chromosome mis-
segregation or the integration of mobile elements. Somatic mutations 
can be divided into different types41: substitutions, the vast majority 
of which are single-nucleotide variants (SNVs); small (less than 50 bp) 
insertions and deletions (indels); SVs, including segmental duplica-
tions, large deletions, translocations, inversions, mobile element 
insertions (MEIs) and complex SVs, including chromothripsis and 
chromoplexy; and other large chromosomal aberrations, such as 
whole-chromosome gains and losses. Duplications, deletions and 
whole-chromosome gains and losses are also referred to as copy num-
ber variants (CNVs) or mosaic chromosomal alterations. These classes 
differ profoundly in their underlying causes and patterns across tis-
sues and their phenotypic effects on cells. In normal tissues, SNVs 
are by far the most common type of somatic variation, followed by 
indels. SVs and large chromosomal aberrations are observed less 
frequently27, but typically affect more base pairs and thus may have 
larger functional effects. However, most previous studies on somatic 
mutations have relied on short-read DNA sequencing, which may fail 
to detect various types of SVs. Studies of germline differences have 
shown that SVs are far more abundant, but the majority are missed 
by short-read approaches42.

Different mutagenic processes cause distinct patterns of somatic 
mutation, depending on the types of DNA damage incurred and the 
pathways responsible for DNA lesion repair. Research over the past 
decade has deconvolved these patterns into mutational signatures 
and linked certain signatures to specific mutagens, such as ultraviolet 
light, tobacco smoke, chemotherapy or natural age-related accumula-
tion of endogenous mutations43. Mutational signatures are most com-
monly applied to SNVs44, but they have been defined for other classes 
of somatic mutations, including indels44, chromosomal alterations45,46 
and SVs44,47. In the context of SNVs, mutational signatures reflect the dis-
tribution of specific base changes within their trinucleotide contexts.

All normal tissues, including post-mitotic cells, exhibit SNV muta-
tional signatures linked to clock-like endogenous processes (single base 
substitution signature 1 (SBS1) or SBS5) and, to a lesser extent, oxida-
tive damage (SBS18)48–50. Mutational signatures linked to mutagenic 
exposure can be confined to specific organs, such as UV damage (SBS7) 

in the skin51 or skin-resident T lymphocytes52, damage from tobacco 
smoke (SBS4) in the bronchial epithelium of the lung53 and exposure 
to a genotoxic strain of Escherichia coli (SBS88)24 in the large intestine. 
These exposure differences drive some of the variation in the types 
of somatic mutations observed across different tissues of the human 
body7,48,54. Furthermore, different mutational processes show different 
correlations with genomic features, such as replication timing, replica-
tion strand and transcription strand55–58, reflecting genomic biases of 
DNA damage and repair.

The somatic mutation rate varies across human tissues and life 
stages (Fig. 1c). During the initial embryonic cell divisions, somatic 
SNVs accumulate at a high rate of approximately three per division, 
probably due to the high division rate and delayed activation of the 
zygotic genome6,7,59. Afterwards, the mutation rate decreases (approxi-
mately one SNV per division) during development in utero, in both 
embryonic tissues, such as the fetal brain9,60,61, and extraembryonic 
tissues, such as the placenta62. After birth, mutation rates further 
decline 5–10-fold and vary substantially across tissues, from 16–20 
SNVs per year in post-mitotic cells such as neurons21,50,61,63 to 44 SNVs 
per year in colonic stem cells24 (Fig. 1c). Germ cells have the lowest 
somatic mutation rate reported23, in line with the parental age effect 
on de novo germline mutations48. Although division rate may influence 
the endogenous somatic mutation rate, there are probably other fac-
tors that modulate both mutagenesis and repair of DNA damage64–66.

Large somatic mutations such as SVs, chromosomal alterations and 
MEIs are detected much less frequently than SNVs and indels. Although 
somatic aneuploidy appears to be rare, sub-chromosomal structural 
variations affect 13–41% of neurons18,34,67,68. Frequent CNVs, mostly 
duplications of likely developmental origin, have been detected in 
approximately 7% of brains from the Brain Somatic Mosaicism Net-
work consortium34, and mosaic chromosomal alterations have been 
observed in approximately 5% of blood samples in the UK Biobank69. 
Single-neuron DNA sequencing of mobile element-enriched librar-
ies or whole genomes has revealed MEI events that appear to occur 
during development and create mosaicism in the human brain5,70,71. 
Bulk sequencing approaches have also detected a few examples of 
somatic MEIs in the brain72 and non-brain tissues including the heart73, 
fibroblasts73 and liver74. Recent somatic MEI profiling in colorectal 
epithelial single-cell clones has indicated peak insertion rates during 
early embryogenesis75. Considering the potential effect of these large 
mutations on the sequence, splicing or expression of genes76,77, it is 
valuable to understand their prevalence across human tissues during 
development and ageing.

Although most somatic mutations do not discernibly affect the phe-
notype of a cell, some somatic mutations are under selection in different 
tissues. Such driver mutations may lead to a proliferative advantage or 
increased survival of the cell and its progeny, resulting in clonal expan-
sions in tissues. Cancer is the canonical example of somatic evolution 
and often involves the stepwise accumulation of key somatic mutations 
and genomic instability1,78. Mutations typically associated with cancer 
can be abundant across normal tissues with age. For comparison, in a 
typical individual of 60 years of age, approximately 90% of the endo-
metrial epithelium harbours a driver mutation79, whereas this is true 
of only about 1% of the colonic epithelium24, despite the latter having 
a much higher somatic mutation rate24,79. This difference is probably 
caused by the menstrual cycles of shedding and regrowth in the endo-
metrium. Probably due to similar clonal expansion in development or 
ageing, about 6% of individuals harbour a 3–20-fold higher than average 
number of detectable SNVs in their brain34. These varying proportions 
of clonally expanded cell populations probably reflect differences in 
tissue architecture, cell turnover, regeneration and selection pressures, 
but much is still unknown.

Although many driver mutations in normal tissues can be identical 
to those found in corresponding cancer types, their abundance and 
phenotypic consequence may differ profoundly as normal tissues may 
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experience different selection pressures than cancer. For example, 
clones with NOTCH1 mutations are exceedingly abundant in normal 
oesophageal epithelium, at even higher rates than oesophageal can-
cers80. NOTCH1-mutant clones have a lower propensity of malignant 
transformation and even outcompete precancerous clones in the 
oesophagus81,82. These observations suggest that characterizing the 
somatic mutation landscape in normal individuals will be important 
to understand the role of these mutations in pathological phenomena 
such as cancer.

Finally, somatic mutations can be used as intrinsic barcodes to cre-
ate phylogenies and trace the ancestries of cells, such that it becomes 
possible to quantitatively study human development from somatic 
mutations ascertained in adult donors6,7,20,25,40,58–60,70,83. This approach 
has been applied to studying embryogenesis, clonal expansions across 
the lifespan and the origins of childhood cancers84. As the allele fre-
quency of a mutation reflects the fraction of cells within a population 
that harbours it, this method can be used to quantitatively assess the 
contribution of embryonic progenitors to the adult body. Such studies 
have found that one of the two daughter cells of the zygote often has at 
least twice as many descendant cells as the other6,7,20,25,40,58–60,70,83,85,86, 
probably due to cellular bottlenecks in embryogenesis, developmental 
cell death or migratory patterns, and confirming earlier observations 
in mice40,87.

Together, these initial studies on somatic mutations in normal 
tissues have shown the variability of rates, patterns and selection of 
mutations across tissues. It is unknown, however, how variable these 
patterns are between individuals and how different types of somatic 
mutations are correlated with inherited genetic background, environ-
mental exposures or other behavioural characteristics. In addition, 
mutation discovery is severely hampered in poorly mapped regions 
of the genome, including acrocentric chromosomes, centromeric 
and repetitive regions, and, hence, the mutational patterns in these 
regions are largely unknown. Thus, identification of the differences 
in mutational patterns between tissues and individuals, particularly in 
the context of specific organs21,26,29,30,34,88,89, may have profound clinical  
implications.

Somatic mutations and disease
Somatic mutations can profoundly alter the phenotype of a cell and 
have been implicated in human diseases. Besides cancer, various 
other diseases and conditions can be a result of somatic mutations, 
including cardiovascular anomalies, immunological and neurologi-
cal disorders26,30–34,52,90,91. Of note, early somatic mutations can cause 
clonal expansions and alterations in the differentiation programs 
of precursor cells that subsequently can lead to paediatric cancers 
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and organ overgrowth84,92,93. Among the first described instances of 
somatic mutagenesis, PI3K–AKT–mTOR pathway mutations involving 
the brain were associated with brain malformations leading to intrac-
table epilepsy33,94,95. Other examples are NRAS mutations leading to 
congenital melanocytic nevi96 and UBA1 mutations in haematopoietic 
stem cells97 leading to VEXAS syndrome, a rare and severe inflamma-
tory disorder. Somatic expansions of short tandem repeats in the 
brain can cause cell death and neurodegeneration98, and underpin 
Huntington disease99,100. Large SVs, including CNVs and MEIs, have 
also been implicated in neurodevelopmental and neurodegenerative 
disorders72,101,102.

The effects of somatic mutations can be highly specific to the tim-
ing and tissue of origin. For example, an activating PIK3CA mutation 
acquired during development can lead to widespread overgrowth 
across organs and vascular malformations91. However, PIK3CA muta-
tions acquired after development can lead to cavernomas in the brain103 
and are also a common driver mutation observed in normal colonic24 
and endometrial epithelium79.

Clonal expansions can also indirectly lead to or influence other 
diseases26. An example is clonal haematopoiesis of indeterminate 
potential (CHIP), characterized by a clonal expansion within the hae-
matopoietic stem cell compartment driven by somatic mutations. 
CHIP is highly prevalent in the context of normal ageing26. Besides 
acting as a potential cancer precursor clone, CHIP has been linked to 
various non-cancer diseases, such an increased risk of cardiovascular 
disease104 and infections105.

Conversely, diseases can also select clones with certain adaptive 
somatic mutations. Recently, inflammatory bowel disease has been 
shown to lead to the preferential remodelling of the colonic epithe-
lium with clones harbouring IL-17 and Toll-like receptor pathway 
mutations29,106. Likewise, chronic liver disease selects for clones of 
hepatocytes that escape the toxicity imposed by the disease, notably, 
by recurrent, independent mutations in FOXO1, CIDEB and GPAM, which 
are all involved in lipid metabolism89.

Together, research over the past years has shown that somatic evolu-
tion is ubiquitous in normal tissues and is fundamental to our under-
standing of the causes, mechanisms and consequences of disease, and 
the normal process of ageing.

The SMaHT Network
The SMaHT Network, funded by the NIH Common Fund, was estab-
lished with the goal of transforming our understanding of how somatic 
variation in human cells influences biological processes. The SMaHT 
Network will accomplish this through the following aims: (1) generate 
a comprehensive dataset of somatic variants across human tissues 
(Fig. 2); (2) develop tools and technologies to optimize detection and 
characterization of various types of somatic variants; and (3) create a 
somatic mutation database that is widely used by researchers and the 
wider public, and interoperable with similar datasets.

The Network comprises five Genome Characterization Centres 
(GCCs), 14 Tool and Technology Development projects (TTDs), an 
Organizational Centre (OC), a Data Analysis Centre (DAC) and a Tis-
sue Procurement Centre (TPC), and includes over 250 researchers 
from 52 institutions. The GCCs are tasked with producing a core dataset 
of somatic mutations for the SMaHT Network from multiple tissues 
collected by TPC, whereas TTDs are tasked with developing novel 
experimental assays and computational tools. The DAC will integrate 
the data generated by GCCs and TTDs to build the somatic mutation 
catalogue, data portal and the analysis work bench for the Network. 
The OC will coordinate the Network activities and focus on outreach 
efforts and building liaison with other genomics consortia. The 
SMaHT Network has implemented a set of policies (https://smaht.org/ 
policies/), including a policy to allow external researchers to apply for 
associate membership of the Network.

The tissues to be profiled by the Network include those arising from 
the three germ layers and germlines within the human body, which will 
give the opportunity to delineate early somatic mutations that are 
common across all tissues, as well as later mutations that are unique 
to certain tissues (Fig. 2). The TPC is partnering with multiple organ 
procurement organizations (OPOs) in the USA for the screening, 
authorization and recovery of tissues from post-mortem organ and 
tissue donors. Tissues will be collected following transplant recovery 
and include the ascending and descending colon, oesophagus, lung 
and liver (predominantly endoderm); blood, heart, aorta and skel-
etal muscle (predominantly mesoderm); and the brain, adrenal gland, 
sun-exposed and non-sun-exposed skin (predominantly ectoderm). 
We also aim to collect buccal swabs to assess the extent of the somatic 
mutation landscape that can be gleaned from clinically accessible tis-
sues in living donors. To study mutagenesis in germ cells, we also aim 
to collect ovaries and testes. Finally, to enable various experimental 
techniques requiring live cells, we will derive fibroblast cultures from 
the dermis (skin). All tissues are requested to be recovered from each 
donor approached for the SMaHT tissue collection. The number and 
type of samples collected from each donor will vary based on donor 
authorization and eligibility (Box 1), but the goal is to recover as many 
tissues from a single donor as possible. To study the mechanisms 
and consequences of somatic mosaicism across the lifespan, these 
post-mortem donors will span the human adult age ranges from 18 to 
over 85 years. The race and ethnicity of donors are assessed using a 
single-question framework.

To maximize the scientific and clinical impact of the dataset, the 
TPC will collect a large amount of donor metadata during donation 
and biospecimen collection, building on practices developed for 
the Genotype-Tissue Expression (GTEx)107 and developmental GTEx 
projects108. De-identified donor-level data will include demographic 
information, medical history, sample-based laboratory test results and 
death circumstances. Sample-level data will include tissue type and 
location, ischaemic time and tissue metrics from pathology review. 
Pathology images will be made publicly available. When possible, tissue 
sampling will align with the common coordinate framework structure 
of other large-scale projects. For all of these biospecimens, sufficient 
fresh-frozen material will be collected and banked to enable all core 
assays as well as implementation of novel emerging technologies. Fixed 
samples for pathology review will be collected from adjacent sites to 

Box 1

Criteria for SMaHT donors
Inclusion criteria:
•	 Donor over 18 years of age
•	 Collection can be completed within 24 h of cross-clamp or 

cardiac cessation
Exclusion criteria:
•	 History of HIV, HCV or HBV
•	 History of intravenous drug use in the past 5 years
•	 Chemotherapy or radiation treatment in the past 24 months
•	 Known chromosomal or genetic disorder
•	 Current positive blood cultures (sepsis)
•	 Active and/or metastatic cancer
•	 Diagnosed with multisystem organ failure
•	 Received organ or allogeneic bone marrow transplant
•	 Received whole-blood transfusion in 48 h before cross-clamp or 

cardiac cessation
Exclusion criteria for brain donation specifically:
•	 Cause of death related to penetrating brain injury or head trauma
•	 Brain dead or ventilator dependent for greater than 24 h

https://smaht.org/policies/
https://smaht.org/policies/
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the fresh-frozen specimens utilizing a standardized collection schema 
developed for each tissue type.

To pursue a demographically robust and evenly sex-distributed pool 
of donors, the SMaHT Network includes an ethical, legal and social impli-
cations project109 consistent with the recommendations of the American 
Society for Human Genetics to address under-representation in human 
genomics studies with meaningful engagement of under-represented 
communities109. This ethical, legal and social implications substudy 
engages geographically, racially, ethnically and socioculturally diverse 
stakeholders, which include family decision-makers, tissue requesters, 
community advisory board members and multi-disciplinary specialty 
committee members throughout the entire duration of the SMaHT 
Network. Feedback from community stakeholders will be leveraged to 
inform communication and enrolment efforts as well as dissemination 
of study findings.

The SMaHT Network is uniquely positioned to collaborate with 
many other large consortia and programmes. These include the 
Human Pangenome Reference Consortium9, to leverage methods 
for constructing haplotype-phased genome assemblies; the Impact 
of Genomic Variation on Function Consortium110, to understand the 
functional consequences of genetic variation; the developmental GTEx 
project108, to access datasets from tissues at early developmental stages; 
the Human Tumor Analysis Network and PreCancer Atlas, to further 
understand the progression from normal cells to tumour cells through 
somatic mutations; and PsychENCODE111, to inform on the phenotypic 
consequences of brain somatic mosaicism. These collaborations will 
enrich the individual studies and, ultimately, through data integration 
and cross-network analyses, further enhance our understanding of the 
context and consequences of somatic mutations.

Producing the somatic mutation catalogue
To produce the first phase of the somatic mutation catalogue, the 
SMaHT Network will strike a balance between standard genomic assays, 
productionized and applied uniformly by the GCCs to all tissues, and 
bespoke assays developed by the TTD projects, focusing on novel 

technological approaches. As part of the initial phase of the SMaHT 
project, benchmarking efforts are nearing completion, using both 
primary human tissues and cell lines. We have used this benchmarking 
to determine optimal sequencing coverage, compare the accuracy of 
variant calling algorithms, and evaluate the utility of long-read and 
short-read sequencing data generated on diverse sequencing platforms 
from multiple GCCs.

The GCCs will deploy three core assays across all tissue specimens 
that meet quality thresholds: deep short-read whole-genome sequenc-
ing (WGS; over 300× coverage), long-read WGS (over 30× coverage) 
sequencing and RNA sequencing (over 50 million reads). The deep 
short-read WGS will enable the discovery of high allele frequency 
somatic mutations across tissues acquired early in embryogenesis, 
as well as discovery of the large clonal expansions arising later in life. 
As these core assays will be performed on bulk tissues, composed of 
heterogeneous cell types, only mutations with a relatively high vari-
ant allele frequency (above 1–2%) will be accurately detectable at the 
proposed depth of sequencing. The long-read WGS will facilitate the 
detection of complex SVs, MEIs and variants in complex genetic loci 
that have been challenging to accurately study using short-read data, 
such as the MHC region, centromeres, telomeres, acrocentric DNA 
including ribosomal DNA and other tandem-repeat regions of the 
genome. Ultra-long-read sequencing will enable us to generate near 
telomere-to-telomere donor-specific reference genome assemblies 
for at least 50 donors and through reducing misalignment, enhance 
the discovery of diverse types of variants within an individual50, 
including complex somatic SVs and other mutations in previously 
unmappable regions of the genome112. Finally, RNA sequencing may 
allow us to assess transcriptional consequences of early mutations 
and late clonal expansions, as well as, by comparison with single-cell 
RNA sequencing atlases113, cell-type composition of heterogeneous  
tissues.

In addition to these core assays, GCCs will deploy three approaches 
specifically designed to profile low-frequency somatic mutation: 
duplex sequencing, single-cell WGS and transcript-based detection 
of mutations. These technologies, although published and well-tested, 

Table 1 | Comparison between somatic mutation discovery methods

Feature Bulk sequencing Duplex sequencing Clonal expansion Single-cell WGA (PTA) LCM clones

Applicability to any 
tissue

Yes Yes No Yes No

Mutation types 
discovered

All SNVs and indels All All All

Applicability to long 
read

Yes Yes Yes Inefficient Inefficient

Fraction of genome 
sampled (%)

100 30–100, depending on 
fragmentation method

100 Approximately 90 per cell; 
100 across cells

100

Detection of 
early and clonally 
expanded mutations

Most Minority Depending on clone 
number

Depending on cell number Depending on clone 
number

Overall mutation 
spectrum

No Yes Yes Yes Yes

Likely amount of 
artefacts

Small (10−4) Very small (less than 10−8) Small (10−4) Some Small (10−4)

Information on cell 
lineages

No No Yes Yes Yes

Advantages Sensitive detection 
of high-frequency 
mutations of all types

Obtaining overall mutation 
spectrum even at low (0.5–2×) 
duplex coverage

Accurate mutation 
discovery at a single-cell 
level

Mutation discovery at a 
single-cell level in any 
tissue

Accurate mutation 
discovery at a 
single-cell level

Limitations Need for high 
coverage; missing 
low-frequency 
mutations

Only SNVs and indels; missing 
high-frequency mutations at 
low (0.5–2×) coverage

Applicable to culturable 
or reprogrammable cells

Less than 50% sensitivity 
because of dropout and 
amplification artefacts

Applicable to tissues 
with visible clonal 
substructures

A combination of different methods can achieve comprehensive mutation discovery and accurate analysis. LCM, laser capture microdissection; WGA, whole-genome amplification.
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represent recent innovations and have not yet been systematically 
deployed across sequencing centres or applied at large scale.

As conventional DNA sequencing platforms have a non-trivial 
sequencing error rate (in the order of 1 in 1,000–10,000), a putative 
mutation needs to be detected in multiple independent reads to assure 
it is not artefactual. However, by sequencing both the forward and the 
reverse strands of each individual DNA duplex molecule, this error rate 
is drastically reduced. As the reduced error rate is much lower than the 
expected number of somatic mutations in most tissues, an average 
mutation burden and mutational profile can be obtained by shallow 
genome-wide duplex coverage (0.5–2×)63,114. Duplex sequencing of bulk 
tissue samples is well suited to finding average mutation burdens and 
spectra of SNVs and indels within cell populations, but the low depth 
generally precludes discovery of somatic CNVs and SVs, or the precise 
inference of variant allele frequency of specific mutations.

Even with a reduced sequencing error rate, bulk DNA sequencing 
will average out the mutational patterns of all cells and does not allow 
assessment of the variability of mutational patterns between cells or the 
reconstruction of cell lineages. Instead, sequencing the DNA of single 
cells or single-cell-derived clones will enable the most detailed discov-
ery of somatic mutations. This can be achieved either by expanding 
single cells in vitro6,25,26,52,59 or laser capture microdissection to isolate 
naturally occurring clonal populations of cells7,24,79,88,115.

Alternatively, direct single-cell DNA sequencing is applicable to 
all cell types, including non-dividing cells. However, whole-genome 

amplification can cause allelic or locus dropout, uneven coverage 
across the genome and artefactual variants introduced during bio-
chemical amplification. The direct library preparation (DLP+)116,117 
method avoids whole-genome amplification and allows for the accu-
rate detection of CNVs at the single-cell level and other mutations at 
the population level. The primary template-directed amplification 
(PTA)30,118 method offers a substantial improvement in data quality over 
previous single-cell amplification methods, resulting in more uniform 
genome coverage and fewer artefactual variants. A more recent version 
of PTA, the ResolveOme approach, profiles both the transcriptome and 
the genome from the same single cell. If validated, this approach will 
represent a major advance in allowing new mutation detection and 
cellular phenotyping at the same time. Profiling somatic mutations 
in single cells will enable us to characterize mutational patterns and 
associations between mutation types and to reconstruct phyloge-
netic trees of normal cells across tissues. In cases of polyploid cells, 
the variant allele frequencies of somatic mutations may deviate from 
the expected 0.5 and ploidy will need to be taken in consideration in 
downstream analyses.

Finally, at least some somatic mutations can be inferred from  
RNA119–121. Methods that allow for the interrogation of the full-length 
transcriptome in single cells, such as Smart-seq3 (ref. 122) or STORM- 
seq123, can facilitate the detection of somatic mutations, such as SNVs, 
indels and fusion genes within transcribed regions of the genome. This 
allows assessing cell-type specificity for clonal expansion of certain 

Box 2

Experimental and analytical methods adopted by the SMaHT Network
Core assays
•	 Short-read DNA sequencing (Illumina)
•	 Short-read RNA sequencing (Illumina)
•	 Long-read DNA sequencing (PacBio and Oxford Nanopore 

Technologies)
•	 Long-read full-length transcript sequencing (PacBio)
Extended assays
•	 Single-cell DNA sequencing with PTA
•	 Duplex sequencing: concatenating original duplex for  

error correction, nanorate sequencing (NanoSeq), Tn5- 
duplex-seq (CompDuplex-seq and VISTA-seq) or Ultima  
Genomics ppmSeq

Scale-up approaches and technological developments
Single-molecule sequencing

•	 Hairpin duplex-enhanced fidelity sequencing  
(HiDEF-seq)
Single-cell duplex sequencing

•	 scNanoSeq and scUduplex-seq
Structural variants detection

•	 Single-cell full-length RNA sequencing for MEI detection
•	 Single-cell, mini-bulk mobile element-targeted sequencing 

(PTA-HAT-seq)
•	 Single-cell total RNA sequencing miniaturized sequencing 

(STORM-seq)
•	 Strand-seq

Spatial variant detection
•	 Slide-tags

Genotype-to-phenotype multi-omics
For epigenome:

•	 Single-cell 3C-seq protocols (for example, Dip-C)
•	 Assay for transposase-accessible chromatin (ATAC-seq)
•	 Genotyping of targeted loci with chromatin accessibility  

(GoT-ChA and GoT-EpiM)

•	 Fiber-seq (single-molecule chromatin accessibility, nucleosome 
occupancy, transcription factor occupancy, RNA polymerase 
occupancy, CpG methylation and genetic variant identification)

•	 Var-CUT&Tag (enrichment and epigenetic annotation of variants in 
regulatory elements)

•	 Strand-seq (nucleosome occupancy and structural variants in the 
same cell)
For transcriptome:

•	 ResolveOme method
•	 GoT-ChA-RNA
•	 Duplex-seq-based large-scale single-cell dual omics profiling

For proteome:
•	 GoT-ChA-Pro

Computational tools
•	 Donor-specific reference genome assemblies (paired Fiber-seq, 

ultra-long Oxford Nanopore Technologies and Hi-C data)
•	 Hybrid approach for single-cell WGA-RUFUS (a reference-free, 

kmer-based variant detection algorithm)
Infrastructure
•	 Centralized three germ layer tissue collection banking with donor 

metadata
•	 Automated analysis pipelines for quality control
•	 A variant catalogue containing a curated set of annotated somatic 

mutations
•	 Computational pipelines with multi-omics platforms
•	 Human pangenome visualization with somatic mutation detection 

pipelines
•	 A cloud-based infrastructure and a web portal

The SMaHT Network will apply a set of standard approaches as 
well as benchmark new methods to improve detection, analysis 
and functional annotation of somatic variants across tissues and 
individuals.
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genetic variants. Furthermore, STORM-seq enables quantification of 
transposable element expression at single-cell resolution, which has 
been shown to be challenging with other single-cell RNA sequencing 
methods124. The single-cell data also provide references for a more 
precise deconvolution of cell types in bulk tissues.

Each of these methods for the detection of somatic mosaic vari-
ants presents its own advantages and disadvantages and thus they 
are complementary (Table 1). For example, although genome-wide 

duplex sequencing has a lower sequencing error rate and excels at 
population-level inferences of patterns of short mutations acquired 
during the entire lifespan, the low depth precludes detection of the pre-
cise allele frequency of a specific variant. Bulk sequencing at medium–
high coverage (300×) will only detect variants at a sufficiently high 
frequency (that is, 1–2%) in tissues, which are mostly acquired in early 
embryogenesis. Single-cell sequencing can in principle detect all vari-
ants present in a single cell and allow reconstruction of cell phylogenies, 
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but it requires significant costs and efforts to address genome amplifi-
cation artefacts. RNA-based mutation discovery allows for direct inte-
gration of mutations with transcriptomic information but is naturally 
confined to expressed regions of the genome. Together, these genomic 
assays function as complementary techniques to detect somatic muta-
tions and will enable the robust interrogation of mutational patterns 
across human tissues.

Areas of technological development
As new technologies to interrogate somatic mutations with high resolu-
tion or sensitivity are constantly emerging, a large part of the SMaHT 
Network is devoted to developing new tools and technologies (Box 2). 
The first area of innovation aims to increase the accuracy of mutation 
detection in single cells or molecules by further reducing background 
noise. For single-cell WGS, a limited cloning step to create small pools of 
cells can reduce allelic dropout and amplification artefacts. In parallel, 
the SMaHT Network aims to reduce the error rate of amplification and 
sequencing for single cells and molecules through various adaptations 
of duplex sequencing technologies63,125–127. These approaches will allow 
for the interrogation of the landscape of somatic variation in single 
cells and complex multicellular tissues with high precision, which is 
crucial to study tissues without large-scale expansions.

Second, the SMaHT Network aims to increase the sensitivity of SV 
detection to single molecules or cells. As SVs extend beyond the length 
of a typical short read, long-read sequencing unlocks SV detection 
across the genome, especially for MEIs and other rearrangements 
in repetitive regions128,129. However, many single-cell DNA amplifica-
tion approaches result in short fragments. Therefore, we are applying 
long-read sequencing to clonal populations such as induced pluri-
potent stem cell lines, which have been used25 in lieu of single cells 
for lineage reconstructions as they can be expanded and analysed 
by bulk sequencing, avoiding in vitro DNA amplification. In addition, 
MEIs can be cost-effectively assessed by target enrichment assays as 
new insertions share conserved sequences in each transposon sub-
family. We are developing targeted detection of MEI insertions by 
utilizing Cas9-targeted long-read sequencing130 and PTA-amplified 
micro-bulk or single cells73. These efforts will unlock the study of SVs 
and MEIs in all tissues and across the lifespan, even in the absence of 
clonal expansions.

Third, the SMaHT Network will develop scalable platforms that 
can perform variant detection spatially in human tissues, through 
single-cell DNA and RNA sequencing with resolved spatial barcodes131,132. 
This will allow us to study the prevalence and extent of clonal expan-
sions across ages and tissues, especially in organs without a clearly 
organized tissue architecture.

An outstanding question is the effect of specific somatic mutations 
on the phenotype of the cells that harbour them. Although certain 
mutations are under positive selection and lead to clonal expansions, 
how these mutations alter cellular phenotypes is mostly unknown. The 
consequence of a mutation can be assessed by combining mutational 
readouts, either through genotyping of specific mutations133,134 or 
genome sequencing, in combination with functional readouts of cells, 
such as the transcriptome, proteome, epigenome, methylome and the 
chromatin accessibility landscape135–140. Interpreting the phenotypic 
effects of somatic mutations will greatly benefit our understanding of 
the clinical consequences.

The efforts in tool and technological development within the SMaHT 
Network are focused on improving precision in somatic mutation detec-
tion and interpretation at scale, each addressing vital shortcomings of 
current assays, with a goal to productionize and deploy many of these 
within the Network at large. After the development phase, the precise 
extent and scope of the deployment of these assays across the SMaHT 
tissues and donors will depend on the cost, scalability and priorities 
of the Network.

Integration and analysis of data
The low variant allele frequency of mosaic variants brings unique chal-
lenges in bioinformatic analysis141, and we expect that novel compu-
tational methods and tools are needed to fully analyse the data and to 
increase the sensitivity and specificity of variant detection. Somatic 
mutation detection algorithms developed in cancer genomics are often 
inadequate for detecting variants with allele fractions less than 2–5% 
and simply increasing the depth of sequencing is not cost-effective. 
Thus, more sophisticated machine learning algorithms that efficiently 
incorporate various local features near candidate variants may prove 
useful136–138,142.

Other challenges include optimal integration of long-read and 
short-read data, inference of lineage relationships based on bulk and 
single-cell data, and effective strategies for integrative and compara-
tive analysis of samples across the tissues and across individuals. An 
important aspect of our analysis will be the use of donor-specific diploid 
genomes assembled using short Illumina, long PacBio and ultra-long 
Nanopore and Hi-C reads. Alignment to the donor-specific reference 
genome135 will allow for more accurate variant identification, espe-
cially in repetitive regions, as well as for examination of allele-specific 
transcriptional and epigenetic modulations associated with genetic 
variants.

The SMaHT DAC will lead an effort to collect, curate and analyse the 
vast amount of multi-modal data generated on multiple platforms and 
to create a data resource for the scientific community. The DAC will 
ensure high data standards with various quality control steps and com-
pile extensive metadata describing experimental and data processing 
protocols, following the FAIR (Findable, Accessible, Interoperable and 
Reusable) guidelines143. Scalable and cost-effective analytical work-
flows will be implemented on a cloud platform with full provenance 
and docker images to enable reproducibility of the analysis output.

The data generated by the consortium will be made available to the 
wider scientific community via a user-friendly and secure web portal 
(https://data.smaht.org). This portal will feature: (1) a reference cata-
logue of somatic variants that can be searched (for example, by locus, 
tissue or phenotypic features such as age) and annotated with informa-
tion from other genomics databases; (2) a workbench that enables users 
to apply the computational pipelines developed by the SMaHT Network 
to their own data; and (3) data visualization tools including a multi-scale 
browser that allows users to navigate the data from a genome-level view 
to the sequencing read-level view. Visual inspection of variants using 
such a browser will be particularly helpful in assessing their quality, 
and the annotations will enable rapid identification of variants that 
may be functionally relevant.

Conclusion
The SMaHT Network aims to produce a comprehensive reference cata
logue of somatic mutations, across tissues and individuals, by har-
nessing the full potential of many different genomic assays, including 
short-read and long-read bulk WGS, duplex sequencing, ultra-long-read 
sequencing, single-cell DNA sequencing and RNA sequencing (Fig. 3). 
The Network will develop new tools and technologies to increase our 
ability to detect somatic mutations as well as infer their phenotypic 
consequences at greater resolution. All of these various data modalities 
will be integrated, analysed and released to the research community 
and wider public.

An extensive catalogue of somatic mutations will reveal mutational 
patterns, rates and signatures across tissues, allowing us to infer the 
biological and molecular processes that govern somatic mutagenesis 
and their adaptive and maladaptive consequences for development 
and disease (Fig. 3). Our assays can inform on mutations under selec-
tion in tissues, which result in clonal expansions and potentially tissue 
dysfunction. Single-cell analyses added to the bulk readouts will further 

https://data.smaht.org/
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allow us to generate cellular phylogenies of human development, infer 
embryonic differentiation dynamics and improve our future assess-
ment of de novo germline mutations.

Delineating the full extent of somatic mosaicism greatly exceeds 
the scope of the Human Genome Project. A typical cell may acquire 
hundreds to thousands of somatic mutations in a lifetime. There are tril-
lions of cells in a human body and so the total number of somatic muta-
tions acquired in a single individual may well exceed quadrillions (1015), 
millions of times the size of the human genome. Beyond cataloguing 
somatic variation across tissues, the SMaHT Network provides the 
opportunity to understand the causes, patterns and consequences of 
somatic mutations in normal cells, and provide a crucial comparison 
baseline for disease research. The efforts of the SMaHT Network will 
substantially contribute to our insights into the role of somatic varia-
tion in health, ageing and disease.
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