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Abstract

Portability of trans-ancestral polygenic risk scores is often confounded by differences in link-

age disequilibrium and genetic architecture between ancestries. Recent literature has

shown that prioritizing GWAS SNPs with functional genomic evidence over strong associa-

tion signals can improve model portability. We leveraged three RegulomeDB-derived func-

tional regulatory annotations—SURF, TURF, and TLand—to construct polygenic risk

models across a set of quantitative and binary traits highlighting functional mutations tagged

by trait-associated tissue annotations. Tissue-specific prioritization by TURF and TLand

provide a significant improvement in model accuracy over standard polygenic risk score

(PRS) models across all traits. We developed the Trans-ancestral Iterative Tissue Refine-

ment (TITR) algorithm to construct PRS models that prioritize functional mutations across

multiple trait-implicated tissues. TITR-constructed PRS models show increased predictive

accuracy over single tissue prioritization. This indicates our TITR approach captures a more

comprehensive view of regulatory systems across implicated tissues that contribute to vari-

ance in trait expression.

Author summary

Polygenic risk score models leverage effect size estimates from ancestry-targeted GWAS

to generate well-powered disease stratification models. When ancestry-targeted GWAS is

unavailable for understudied populations, trans-ancestral PRS models may be imple-

mented. However, transferring PRS models across ancestries results in limited predictive

accuracy due to linkage differences between ancestries. Here we show that isolating

GWAS variants with strong functional evidence identified from RegulomeDB-derived

annotations in tissues enriched for trait heritability can improve portability of PRS models

across distant ancestries. The motivation is mutations with evidence of regulatory impact

are more likely to be shared between ancestries than genome-wide significant signals

from ancestry-targeted GWAS. Further, we developed the novel TITR algorithm to aggre-

gate functional GWAS mutations across multiple trait-implicated tissues to iteratively
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construct PRSs. These models provide a more comprehensive view of functional GWAS

mutations that influence variation in complex disease expression and can help improve

portability of PRS models in under-represented populations.

Introduction

Polygenic risk scores (PRS) are an effective statistical tool in stratifying complex disease risk.

Risk stratification from PRS can help inform clinical decision making and treatments for high

risk individuals, and avoid unnecessary treatments for individuals with low genetic risk [1].

The predictive power of PRS is a function of well-powered genome-wide association studies

(GWASs) [2], where large clinical cohort studies produce stronger trait-variant associations,

more accurate single nucleotide polymorphism (SNP) effect size estimates, and greatly reduces

the chance of false positive disease associations [3]. However, large scale GWASs for most

complex traits target individuals of European ancestry with over 79% of GWAS cohorts being

of European origin despite representing only 16% of the global population [4]. Because of this

disparity, PRS models developed for non-European individuals are under-powered and fail to

stratify individual disease risk as effectively as European-centric models [5].

A handful of solutions are available to address this problem of under-powered PRS target-

ing non-European populations. The first is large-scale sequencing and genotyping initiatives

targeting individuals from non-European ancestries. GWAS cohorts in which non-European

populations are equitably represented should ensure robust and accurate associations and SNP

effect sizes regardless of genetic background. Efforts are underway to achieve this goal of

ancestrally-diverse biorepositories, including the All of Us Research Program [6], the Million

Veterans Project [7], and BioBank Japan [8]. However, these and other initiatives are long-

term solutions with significant cost barriers; meanwhile, precision medicine applications for

under-represented populations require more-immediate solutions.

Trans-ancestral PRS models present an alternative solution that leverages large-scale Euro-

pean GWAS cohorts. Briefly, trans-ancestral PRS models take well-powered GWAS associa-

tions and effect size estimates from one population to predict and stratify disease risk in

individuals of another population lacking a sufficiently-large GWAS cohort. The assumption

is that mapping associations from a well-powered GWAS targeting one population to individ-

uals in another population will capture a sufficient degree of SNP heritability across all ances-

tries [9]. However, mapping genome-wide significant associations alone results in poor

transferability of scores due to differences in linkage disequilibrium (LD) patterns and genetic

architecture between ancestral populations [10,11]. This bias is often driven by true causal sig-

nals in LD with tagging SNPs specific to one ancestry and not shared across other ancestries.

Overcoming LD confounding remains a major obstacle in improving transferability of PRS

models between ancestries.

By contrast, previous work has shown that prioritizing SNPs with strong functional geno-

mic evidence improves PRS accuracy compared to traditional PRS computation, in which risk

models are based on the SNPs with the strongest statistical associations. The general intuition

is that selecting variants with functional evidence enriches the dataset for causal SNPs that

likely contribute directly to function, thus circumventing the obfuscating effects of LD. An

example method is AnnoPred [12], which assesses heritability enrichment across a set of func-

tional annotations for a given GWAS trait. These annotation-specific enrichment estimates are

then implemented in a Bayesian model as a prior distribution on GWAS SNP effect sizes.

AnnoPred conferred greater predictive accuracy over PRS models generated from all GWAS
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SNPs, genome-wide significant SNPs, SNPs prioritized by pruning and thresholding, and by

Ldpred [13], which does not prioritize functional SNPs. This shows that introducing func-

tional evidence of regulatory activity into SNP prioritization methods results in well-powered

PRS models and better isolation of causal functional SNPs at GWAS loci. However, AnnoPred

relies on well-matched training and target ancestry datasets, limiting its usefulness in cross-

population PRS modeling. Recently, Amariuta et al. developed a technique for highlighting

regulatory SNPs by leveraging cell-type-specific transcription factor (TF) binding profiles to

construct risk models targeting trait-relevant functional SNPs [14]. This strategy provides sig-

nificant accuracy improvement in trans-ancestral applications over the standard PRS

approach. However, this is limited to evidence from a single cell-type-specific TF, whereas

complex diseases are likely to have multiple regulatory features across many cell and tissue

types, influencing variation in phenotypic expression. Annotations that combine multiple reg-

ulatory features can more accurately identify probable functional variants. Models like Deep-

SEA [15] and Sei [16] leverage sequence-based chromatin profiling data in deep-learning

frameworks to produce allele-specific probabilities that effectively prioritize functional variants

in GWAS data. These combined feature models significantly outperform single feature models

in predicting chromatin features in non-coding genomic regions, and provide a framework

for multi-omic integration in profiling important regulatory features across diverse tissue

types. Additional approaches in combining heterogeneous genomic information like coopera-

tive learning models [17] and Bayesian ensemble methods [18] can also boost signal and

achieve higher predictive accuracy of functional genomic elements.

We hypothesize that prioritizing regulatory mutations on a tissue- or organ-wide scale

within large European GWASs to construct a functionally-informed PRS can improve

trans-ancestral portability of polygenic risk models when applied to under-represented

non-European populations (Fig 1). Because of the differences in LD structures between

ancestries, mutations with the highest probability of regulatory impact are more likely to be

shared across ancestries than those with the strongest statistical association from the Euro-

pean GWAS. Here we introduce the TITR algorithm, a trans-ancestral PRS model that

leverages SNP-level regulatory probabilistic scores from RegulomeDB. Three models–SURF

[19], TURF [20] and Tland [21]—capture experimental evidence from the ENCODE project

on either an organism-wide or tissue-specific scale and also feature allele-specific predic-

tions from DeepSEA and Sei. We show that, by highlighting mutations with the greatest

degree of organism-wide or tissue-specific regulatory evidence, we capture a significant

proportion of SNP heritability and achieve greater predictive accuracy for trans-ancestral

PRS compared to other published methods.

Results

Overview of non-coding regulatory mutations prioritization models

To prioritize functionally relevant GWAS mutations on a genome-wide basis, we leveraged the

previously developed Score of Unified Regulatory Features (SURF) computational model.

Briefly, SURF combines regulatory features from RegulomeDB [22,23], a database that anno-

tates SNPs with known and predicted regulatory elements based on experimental data cap-

tured by the ENCODE project [24], and DeepSEA [15], a deep-learning framework designed

to identify regulatory elements from large-scale chromatin profile data. These features are

combined in a random forest model to produce probabilistic scores of regulatory function

with SNP-level sensitivity [19]. In addition to the SURF model, we also employed tissue-spe-

cific regulatory scores from the Tissue-specific Unified Regulatory Features (TURF) model.

TURF is an extension of the SURF model that isolates experimental evidence for a given tissue

PLOS GENETICS Enhancing portability of trans-ancestral polygenic risk scores with TITR

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011356 August 7, 2024 3 / 18

https://doi.org/10.1371/journal.pgen.1011356


or organ present in ENCODE and feeds those features into a random forest model, weighted

by organism-wide probabilities from the SURF model, to produce 51 distinct tissue-specific

regulatory scores [20]. The goal of this model is to identify genomic regions with more signifi-

cant regulatory effect within a specific tissue over organism-wide predictions. Finally, we also

included the recently developed TLand model, which uses a stacked generalization model to

learn RegulomeDB-derived features across all ENCODE hg38 experiments and predictions

from Sei [16] to assign probabilities for regulatory variants on a cell-type and organ-specific

level for 51 tissue-specific models [21].

Fig 1. (a) Differences in LD structures between populations can lead to inaccurate accounting of disease loci in trans-ancestral risk modeling. Example given

for a disease-associated locus with causal SNP (green) in strong LD with tagging/lead European GWAS SNP (red), where the associated LD blocks are

represented as light-blue bars. Disease locus is accounted for in European and Asian structures, but not in African architecture, where the tagging SNP is not

genetically linked to the causal SNP. (b) DNase-seq profiling can help identify allele-specific chromatin states where transcription factor binding may either be

more readily accessible or completely ablated. (c) Determining causal variants at GWAS loci can be confounded by linkage with tagging variants (d)

Prioritizing trait-relevant regulatory SNPs on either cell-type-specific, tissue-specific, or organism-wide functional evidence can help alleviate PRS confounding

due to LD between SNPs, and (e) result in greater accuracy in disease risk modeling. (f) The TITR algorithm provides a more comprehensive picture of

regulatory programs influencing variation in complex trait heritability by (g) combining multiple tiers of trait-relevant tissue-specific evidence (h) resulting in

stronger predictions over a single implicated tissue model.

https://doi.org/10.1371/journal.pgen.1011356.g001
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Partitioned SNP heritability by top percentiles of tissue-specific regulatory

scores

To identify which set of regulatory SNPs in trait-implicated tissues explains the greatest propor-

tion of heritability, we constructed percentile partitions of SNPs for all 51 ENCODE-defined tis-

sues with TURF and TLand scores. These partitions encompass nearly 10 million SNPs from

the 1000 Genomes Phase 3 European genotypes [25]. To ensure the percentile partition size was

consistent across TURF scores, we performed quantile normalization on all TURF score distri-

butions to make equivalent distributions to build the SNP partitions. This allows for equiva-

lently sized percentile partitions across each tissue-specific score distribution. TLand scores are

quantile normalized during generation. We estimated partitioned SNP heritability by leveraging

the stratified LDSC method [26] for each TURF and TLand score independently, conditioning

on a subset of baseline-LD model annotations [27], excluding annotations from datasets

encompassed by ENCODE to avoid potential overfitting. We partitioned common SNP herita-

bility (MAF> 5%) for 6 GWAS traits: 4 quantitative traits (height and BMI [28]; HDL and LDL

cholesterol [29]) and 2 binary traits (coronary artery disease (CAD) [30] and type II diabetes

(T2D) [31]). We selected the TURF or TLand model with the greatest, significant per-standard-

ized-annotation effect size (denoted τ*), which is defined as the proportional change in per-

SNP heritability attributed to a 1 standard deviation change in annotation value [27]. The moti-

vation for using this statistic as our selection criteria is to highlight the functional annotation

with the greatest impact on SNP heritability differences as a function of annotation variance.

We compared these heritability estimates against published results from IMPACT [14].

Our results show the TURF and TLand models with the greatest τ* estimates align well

with implicated tissues for several traits (S1 Table and S1 Note). Some TURF examples include

adipose tissue for HDL cholesterol [25,32,33], liver tissue for LDL cholesterol [34,35], and pan-

creas for type 2 diabetes [36]. Some highlighted TLand examples include endocrine gland for

HDL cholesterol [37,38] and large intestine for LDL cholesterol [39,40]. The lead TURF model

for height was mouth and may have resulted from misclassifications in experimental assays

present in the ENCODE database. For example, several fibroblast assays, implicated in connec-

tive tissues, are tagged as mouth tissue.

To demonstrate that the lead TURF models capture a large proportion of trait heritability

within the upper quantiles of the scoring distribution, we assessed the proportion of heritabil-

ity captured by SNPs tagged across multiple score quantiles of the lead TURF and TLand

model. We partitioned heritability for all GWAS traits by the top 1/5/10/20/50% of the lead

TURF model (selected by τ* criteria described above) (S2 Table). On average, 6.7%

(SE = 0.0137) and 6.6% (SE = 0.0128) of observed scale heritability is captured by SNPs tagged

within the Top 1% of the lead TURF and TLand model distributions, respectively. This

increases to 25.4% (TURF) and 28.2% (TLand) captured by the Top 5%, and 41.0% (TURF)

and 43.2% (TLand) by the Top 10% in the scoring distribution. Overall, both TURF and

TLand lead models capture a large proportion of trait heritability with the top percentiles of

the scoring distribution, concluding that these tissue-specific multi-feature predictions effec-

tively highlight functional GWAS variants.

In summary, we identified the top TURF and TLand tissue-specific models for a set of

GWAS traits that substantially align with trait-implicated tissues or organs, and also produce

modest per-standardized-annotation effect size estimates. These top TURF and TLand models

also capture a large proportion of overall trait heritability within the top percentiles of their

respective scoring distributions. This demonstrates that SNPs with a greater degree of func-

tional evidence account for a larger proportion of trait heritability than SNPs without strong

regulatory evidence.
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Variant prioritization by TURF modeling improves trans-ancestral PRS

portability

As noted before, PRS models provide insight into an individual’s relative genetic risk of disease

compared to a large spectrum of other genetic risk profiles. However, accurate PRS models

require GWASs with large ancestry-specific population samples, which is problematic when

constructing risk models targeting underrepresented non-European ancestries. To address the

need for greater predictive accuracy in trans-ancestral PRS applications, we implemented

pruning and thresholding (P+T) models restricted to different sets of GWAS variants with

strong trait associations, mutations in genomic coding regions, and functionally-relevant vari-

ants in impacted tissues and cell types. We developed a baseline linear model composed of the

covariates age, sex, principal components 1–10 from PCA analysis, and a coding PRS model

that isolates known common coding mutations (MAF > 5%) as an additional covariate. The

motivation behind incorporating this coding score as a covariate in our baseline model is to

separate out the trait heritability of regulatory regions from those of coding variants. This is

required to explicitly demonstrate the added benefit of regulatory functional prioritization in

the generation of our PRS models. Since our regulatory function predictions do not predict

coding impact of variants and we know that coding variants drive a significant amount of heri-

tability, failing to regress on coding signal would not allow for comparison to the standard

model PRS. Our baseline model (labeled Standard in Fig 2) takes the standard P+T approach,

which clumps and prunes GWAS SNPs based on strength of association from the GWAS

Fig 2. Change in R2 accuracy of EUR-AFR trans-ancestral PRS models by functional SNP prioritization model. Results for 6 phenotypes (4 quantitative—

BMI, height, HDL and LDL cholesterol; 2 binary—coronary artery disease (CAD), type 2 diabetes (T2D)). Error bars indicate 95% confidence intervals

calculated by 1000 bootstraps. Significance is indicated as lead functional model performance against standard model performance.

https://doi.org/10.1371/journal.pgen.1011356.g002
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summary statistics. We then constructed PRS models for both lead TURF and TLand tissue

functional annotations as determined by S-LDSC functional enrichments, and the lead

IMPACT TF annotation from published data for each GWAS trait. We partitioned scores by

multiple thresholds in the respective annotation distributions: top 1%, top 5%, top 10%, top

20%, and top 50% of GWAS SNPs for each annotation. We also included a model that priori-

tizes SNPs with general functional activity from the previous SURF model, using the same

score partitions as above (top 1/5/10/20/50%). We clumped SNPs based on the 1000 Genomes

Phase 3 European reference panel (n = 489) [25], and validated scores for individuals of Afri-

can ancestry present in the UK Biobank (n = 7,324) [41] (Trait sample summaries are detailed

in S3 Table). For the functional annotation models, we selected the partition with the largest

change in adjusted R2 accuracy over the baseline linear model as the representative model for

the lead annotation.

We observed for all 6 traits tested that the lead functionally-informed model significantly

outperformed the standard PRS model in terms of R2 accuracy gained over the null model of

covariates (Fig 2). Of these, 4 traits—BMI, HDL, CAD, and T2D - saw the greatest improve-

ment with the lead TLand model, 1 trait—height—saw the greatest improvement with the lead

TURF model, and 1 trait—LDL—saw the greatest improvement with the lead SURF model.

For the 5 traits where either TLand or TURF models provide the greatest accuracy gains, this

indicates that a greater burden for polygenic risk can be derived from a single-tissue-specific

regulatory model by TLand or TURF than from a general regulatory model provided by

SURF, or cell-type-specific model by IMPACT. This is contrasted by the results observed for

LDL where we infer that regulatory information from a single TLand or TURF model isn’t suf-

ficient compared to the general SURF regulatory model. Overall, we confirm that prioritiza-

tion of functional regulatory GWAS SNPs on a tissue- or organism-wide scale in trans-

ancestral PRS models provides a significant improvement in phenotypic prediction accuracy

over both cell-type-specific TF prioritization and standard PRS approaches.

Iterative construction of a multiple-tissue functional PRS model improves

accuracy over a single-tissue prioritization model

Complex polygenic diseases can affect multiple tissues and organs throughout the human

body. Diseases like coronary artery disease and type 2 diabetes are largely localized to a single

organ or tissue type and most of the trait heritability can likely be explained by our previously

described single-tissue functional prioritization method. However, single-tissue prioritization

is likely insufficient for traits like BMI and height that involve multiple organs and tissues.

This is because single-tissue methods only highlight functional mutations within the most sig-

nificant tissue while ignoring regulatory effects in other relevant tissues. To address this, we

developed the Trans-ancestral Iterative Tissue Refinement (TITR) algorithm to iteratively con-

struct a multiple-tissue functional PRS model that captures relevant regulatory mutations

across multiple trait-implicated tissues (Fig 3).

Briefly, the TITR algorithm takes European GWAS summary statistics and annotates SNPs

with tissue-specific functional probability scores and corresponding percentile bins of the scor-

ing distribution for all 51 TURF models and 51 TLand models. The algorithm then estimates

the partitioned trait heritability for each tissue model and selects those models significantly

enriched for trait heritability. Polygenic risk scores are calculated for the candidate tissues and

optimized in European samples, selecting the scoring model that produces the greatest signifi-

cant ΔR2 over the previous model iteration. The algorithm terminates if no tissue model is sig-

nificantly enriched for heritability, or if no score provides a significant addition of information

to the risk model (See Methods for detailed algorithm description).
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Fig 3. Workflow of the TITR algorithm. Training of the TITR model involves: 1) Partitioning trait heritability by functional annotation; 2) Calculating scores

within training samples; and 3) selecting the optimal PRS model on each iteration. Validation of the TITR model involves: 1) Calculating scores within

validation samples; and 2) calculating the PRS accuracy increase and tissue annotation contributions over TITR iterations.

https://doi.org/10.1371/journal.pgen.1011356.g003
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To validate our TITR-constructed European-optimized PRS model in non-European popu-

lation samples, we implemented a trans-ancestral PRS model to utilize the optimized TITR

model SNP set and constructed risk scores targeting disease risk in individuals of African

ancestry. For our analysis, we selected a cohort of self-reported African ancestry individuals

(n = 7,324) from the UK Biobank. We constructed risk models for 4 quantitative traits: BMI,

height, HDL and LDL cholesterol; and 2 binary traits: CAD and T2D. As with the European

optimization model, we assessed the ΔR2 over a null model consisting of the covariates age,

sex, first 10 principal components, and the previously-optimized coding scoring model.

We assessed the performance of the TITR-optimized PRS model against the performance of

the single tissue prioritization model, comparing the change in adjusted R2 accuracy (ΔR2) for

the top 1% of model SNPs, and the lead scoring partition of SNPs for both TURF and TLand

lead tissue models. We report the TURF model performance across the first 200 iterations of

TITR for BMI, height, and LDL cholesterol in Fig 4. Results for TURF and TLand annotations

for the remaining 3 traits—HDL cholesterol, coronary artery disease, and type 2 diabetes—are

reported in S1 and S2 Figs (legend for tissue labels in S5 Fig). We observed for all traits that the

TITR model performance exceeded the accuracy gains for the top 1% of lead TURF and TLand

prioritized SNPs. This is consistent with our expectation that the TITR algorithm preferentially

selects trait-relevant SNP partitions with strong regulatory evidence over non-relevant muta-

tions with weak regulatory evidence. To further support this expectation, we calculated the

overlap of GWAS SNPs captured by both the top 1% of TURF or TLand single-tissue models

and TITR-optimized models (S3 and S4 Figs). For the 3 highlighted traits BMI, height, and LDL

cholesterol, we observed that TITR models capture 54.9–77% of the top 1% of TURF SNPs and

34–75% of the top 1% TLand SNPs, indicating a considerable overlap between trait-relevant

SNPs and high probability of functional impact on regulatory systems. However, when we com-

pare TITR model accuracy against the lead SNP partitions defined in the single-tissue approach

for TURF and TLand, 8.8–32.2% of lead TURF partition SNPs and 9.8–42.6% of lead TLand

partition SNPs overlap with TITR model SNPs. The limited SNP overlap and enhanced predic-

tive accuracy of TITR PRS models over the lead single-tissue PRS model indicates that the TITR

algorithm better isolates functional mutations impacting regulatory systems across multiple

trait-implicated tissues than prioritizing mutations within a single tissue.

Assessing functionally-informed PRS models in other non-European

populations demonstrates similar trans-ancestral portability improvements

While modeling trans-ancestral PRSs from European to African populations demonstrates the

power of functional prioritization between distant ancestries, modeling between less distant

ancestries should also demonstrate similar power improvements over standard PRS modeling

approaches. We evaluated both single-tissue and TITR-optimized PRS models in a set of

UKBB SAS samples (n = 7,515). RegulomeDB-derived functional PRS models conferred the

greatest ΔR2 over null (BMI: 0.039 (TURF); height: 0.0448 (TURF); HDL: 0.0155 (TURF);

LDL: 0.00779 (TLand); CAD: 0.0135 (TURF); T2D: 0.0175 (SURF)). TITR-optimized models

outperformed the top 1% TURF model for 4 of 6 traits tested (BMI, height, LDL, T2D) and

outperformed the top 1% TLand models for 3 of 5 traits tested (BMI, height, T2D). Overall, tis-

sue-specific functional prioritization in SAS validation samples conferred larger accuracy

improvements over baseline null models and standard P+T as in AFR validation samples.

Discussion

Here we have shown that leveraging functional genomic data when constructing polygenic

risk models improves trans-ancestral portability of PRS over selecting those GWAS variants
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with the strongest statistical associations. By prioritizing functionally enriched tissue-specific

TURF and TLand regulatory annotations identified by stratified LDSC partitioned heritability

enrichments, we provide a modest yet significant improvement in predictive accuracy of

Fig 4. Adjusted R2 accuracy of EUR-to-AFR trans-ancestral PRS model up to the first 200 iterations of the TITR

optimization algorithm for TURF functional model. Results are shown for 3 example traits—BMI, height, and LDL

cholesterol. Dashed black horizontal lines indicate performance by the single TURF model targeting the top 1% SNPs

in scoring distribution. Solid black horizontal lines indicate performance by the single TURF model targeting the lead

partition SNPs in scoring distribution. The most represented tissue models and SNP proportion in the TITR-

optimized PRS model indicated by labels.

https://doi.org/10.1371/journal.pgen.1011356.g004
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European-derived PRS models when applied to individuals of African ancestry. These data

support our hypothesis that isolating functional mutations specific to trait-implicated organs

and tissues encapsulated by RegulomeDB-derived annotation models can provide a more

comprehensive picture of disease architecture across ancestries than population-specific

GWAS loci alone.

With the construction of ensemble risk models by the TITR algorithm, we also demonstrate

that polygenic disease risk can be more accurately explained across multiple regulatory path-

ways within trait-implicated tissues and organs. Two example traits where regulatory informa-

tion from multiple tissues improved risk prediction accuracy in our African validation cohort

are BMI and LDL cholesterol, both prioritizing GWAS SNPs based on TURF functional anno-

tation scores. For BMI, the lead S-LDSC enriched TURF tissue model was brain. The single tis-

sue PRS approach selected SNPs in the top 50% of the TURF brain annotation, providing a

31.4% increase in predictive accuracy over the null model. Under the TITR algorithm, a major-

ity of functional prioritized SNPs were selected from bipolar neuron tissue (50.5%, labeled

“ear” by the ENCODE project) compared to a small fraction from general brain tissue (1.01%)

resulting in a 45.3% accuracy improvement over the null model. For LDL cholesterol, the lead

S-LDSC enriched TURF tissue model was liver. The single tissue PRS approach selected SNPs

in the top 20% of the TURF live annotation, providing a 93.1% predictive accuracy increase

over the null model. Under the TITR algorithm, the model incorporates functional informa-

tion from endocrine gland tissue SNPs (72.75%) as well as liver tissue (27.25%) resulting in a

greater than 5-fold increase in predictive accuracy over the null model. These examples indi-

cate that TITR is better at isolating trait-specific functional mutations as a function of (1)

selecting the tissue model partition with the greatest change in R2 accuracy across all signifi-

cantly-enriched tissues and (2) finer granularity in SNP partitioning as opposed to the 1/5/10/

20/50% partitioning under the single tissue model. We show here that by incorporating evi-

dence of regulatory mechanisms affected by a given polygenic disease across several affected

tissues, we can further improve our ability to stratify disease risk for individuals of non-Euro-

pean descent by refining GWAS findings from European cohorts.

We note a few limitations to our study. First, we leverage European-derived effect size esti-

mates, which may be biased towards linkage patterns found in European populations. A future

direction of this approach is to incorporate effect size re-scaling similar to that implemented

by LDpred-funct [42], which could provide more accurate estimates of allelic effects and better

downstream modeling of trans-ancestral disease risk. Second, the TITR algorithm provides

more powerful predictions over the single-tissue approach only where trait heritability is sig-

nificantly enriched across multiple tissues. This is evidenced by the performance of HDL cho-

lesterol and coronary artery disease under the TURF functional model (S1 Fig), where only

adipose tissue and thyroid gland are significantly enriched for partitioned trait heritability

across all iterations of TITR, respectively. In these cases, risk models generated from the sin-

gle-tissue approach provide the best performance in trans-ancestral applications and should be

selected over the TITR multiple tissue approach.

Finally, we note RegulomeDB-derived functional PRS models perform poorly compared to

standard P+T approaches when tested within the same ancestry (Europeans). This highlights a

critical distinction in LD structure differences between populations. LD is greater in Europe-

ans due to genetic bottlenecks from out-of-Africa migrations, resulting in shorter recombina-

tion time compared to African populations who have not experienced similar bottlenecks [43].

Because of stronger LD in European populations, tagging SNPs in European-derived GWAS

are likely in LD with true causal SNPs, thus potentially inflating effect size estimates of tagging

SNPs due to the “winner’s curse” phenomenon [44]. Thus, isolating causal signal with func-

tional prioritization for within-ancestry European likely attenuates predictive accuracy as
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models do not incorporate inflated tagging signal. Conversely, since LD is weaker in African

populations, European-derived tagging SNPs are less likely to be in LD with true causal SNPs.

Therefore, functional prioritization in African-targeted PRS models could capture causal sig-

nals otherwise unaccounted for under standard P+T conditions. Overall, these results indicate

standard P+T approaches select genome-wide significant variants specific to European popula-

tions and confer greater accuracy for within-population predictions, whereas functionally-

informed models select variants with probable regulatory impacts shared between populations

and provide stronger predictive power in trans-ancestral models.

Overall, we have demonstrated the predictive power of highlighting functional mutations

on a tissue- or organ-wide scale in trans-ancestral polygenic risk modeling, and described a

framework to iteratively build risk models that target functional mutations across multiple

implicated tissues for polygenic traits. This serves as a step in better isolating and identifying

shared causal mutations in regulatory programs across ancestries and developing more accu-

rate risk models for under-represented populations.

Methods

Genome-wide association data

We obtained publicly-available summary statistics for 8 GWAS traits—4 quantitative, 4 binary

—constructed from cohorts of European individuals. We selected these traits for the large Euro-

pean training samples (average nquantitative�1M, average nbinary�287K). GWAS summary statis-

tics were collected from multiple sources: the GIANT Consortium for height and BMI; the

Global Lipids Genetics Consortium for HDL and LDL cholesterol; the CARDIoGRAMplusC4D

Consortium for CAD; and the DIAGRAM Consortium for T2D. For S-LDSC analysis, sum-

mary statistics were formatted to contain the following information for each SNP: rsID, refer-

ence allele (A1), alternative allele (A2), effective GWAS sample size per SNP (N), and the chi-

square statistic derived from the GWAS betas (Z). For the polygenic risk score calculation, sum-

mary statistics were formatted to contain the following information for each SNP: rsID (SNP),

alternative allele (A1), SNP effect size estimate (BETA), and GWAS association signal (P).

Example GWAS summary stats with headers are available in the GitHub repository.

Functional genomic annotations

We leveraged 4 functional genomic annotation datasets to partition GWAS variants. The first

is IMPACT, which models cell-type-specific transcription factor binding profiles to identify

probable regulatory features genome-wide. Further details on the IMPACT model are reported

in Amariuta et al. 2020 [14]. The second is SURF, which predicts regulatory features organ-

ism-wide by modeling transcription factor binding sites leveraging ENCODE experimental

assays and deep learning predictions from DeepSEA. Further details on the SURF model are

reported in Dong et al. 2019 [19]. The third is TURF, an extension of SURF, to generate tissue-

and organ-specific predictions of regulatory features genome-wide. Further details on the

TURF model are reported in Dong et al. 2022 [20]. The fourth is TLand, which constructs a

stacked generalization model to learn RegulomeDB-derived features to predict regulatory vari-

ants at a cell-specific level or organ-specific level. Further details on the TLand model are

reported in Zhao et al. 2023 [21].

UKB genotypes

For PRS analysis, we utilized phenotype and genotype data from the UK Biobank. UK Biobank

is a large-scale biomedical database and research resource containing genetic, lifestyle and
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health information from half a million UK participants. We identified 2 sets of genotype sam-

ples with associated phenotype and demographic information to train and validate both sin-

gle-tissue and multiple-tissue TITR models. For model training, we randomly selected 40,000

individuals who self-reported as being of white British European ancestry. For model valida-

tion, we selected 7,324 individuals who self-reported as being of African ancestry. For each of

the traits tested in this study, we identified subsets of each sample set with either quantitative

phenotype measurements, or constructed case/control subsets for binary traits, maintaining a

4:1 control to case ratio.

Partitioned heritability by functional category

We used stratified LDSC v1.0.1 to partition SNP heritability for our set of 8 GWAS traits. We

used a custom set of 23 baseline-LD annotations that do not overlap with ENCODE datasets

and incorporated one of 51 tissue-specific TURF annotations into the model. We calculated

per-annotation standardized effect sizes (τ*) for each partitioned model as the proportional

change in per-SNP heritability associated with a 1 standard deviation increase in the value of

the annotation. For single tissue model construction, we selected the TURF annotation with

the greatest significant, non-zero τ* value after Bonferroni correction ðt∗ > 0; p t∗ð Þ < 0:05

51
Þ as

the lead TURF annotation for the given trait. For TITR model construction, we selected all

TURF annotations with significant non-zero τ* values after Bonferroni correction as candidate

tissues on each iteration.

TITR algorithm overview

The TITR model starts by taking European GWAS summary-level statistics and annotates

each SNP with corresponding functional probabilities and percentile bins of the scoring distri-

butions from all 51 TURF tissue-specific models. For our analysis, we generated bins with

0.1% resolution resulting in 1000 partitions for each of the 51 TURF models. The iterative con-

struction and optimization in European training samples of our TITR PRS was achieved as

described in Table 1.

LD block sampling method

To protect against over-sampling SNPs within the same LD block, we implemented a custom

SNP selection algorithm that prioritizes functionally-relevant mutations over strongly-associ-

ated variants in the GWAS. On the 1st iteration of the TITR algorithm, we build an LD struc-

ture for the GWAS trait with the PLINK clumping tool, using the 1000 Genomes European

genotype set as a reference panel. For a given TURF tissue partition, we select representatives

from LD blocks containing SNPs from that partition, preferentially selecting index variants,

followed by the most GWAS-significant clumped SNP in the block. This process selects at

most 1 SNP per LD block. For subsequent iterations, we repeat this procedure and merge the

newly-selected SNPs with the current set of TITR model SNPs to then calculate scores.

Polygenic risk score calculation

We calculated polygenic risk scores using the PLINK 2.0 linear scoring tool for candidate SNP

sets for each significant TURF tissue partition. For each partition, we generated scores across a

spectrum of 370 p-value thresholds. We invoked the ‘no-mean-imputation’ option to ignore

missing or unnamed alleles in genotypes, rather than allowing PLINK to add proportional

weight by imputed allele frequency. We calculated scores across a training set of European

UKB samples (n = 40,000) and testing set of African UKB samples (n = 7,324).
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PRS optimization

We optimized our PRS model on each iteration of the TITR algorithm. To do this, we con-

structed a null linear model regressing sample phenotype values against a set of covariates: age,

sex, the first 10 principal components, and an independently-optimized coding-region-specific

PRS. We then tested all scores for each tissue and set of p-value thresholds against the null

model. For the first iteration, we select candidate scores that add significant information to the

model by conducting an ANOVA test for nested linear models. For subsequent iterations, we

select candidate scores that add significant information to the model by conducting a J test for

non-nested linear models. From the candidate scores, we select the lead score as the score that

provides the greatest change in predictive accuracy (ΔR2) over the previous model.

PRS validation

We validated our European-optimized PRS model across iterations of TITR. To do this, we

calculate scores for each TITR iteration within a set of African ancestry samples from the UK

Biobank. Then, we constructed a null linear model regressing sample phenotype values against

a set of covariates: age, sex, the first 10 principal components, and an independently-optimized

coding-region-specific PRS. For each iteration, we add the PRS model as an additional regres-

sor in the linear model. We then assess the change in predictive accuracy (ΔR2) of each itera-

tion’s scoring model.

Supporting information

S1 Note. Increased coverage of variants scales τ.

(DOCX)

S1 Fig. Adjusted R2 accuracy of EUR-to-AFR trans-ancestral PRS model for HDL choles-

terol, coronary artery disease, and type 2 diabetes of the TITR optimization algorithm for

Table 1. TITR Algorithm Overview. The workflow of the TITR algorithm is shown describing each step, the tools used, specific conditions, and the output.

Algorithm

Step

Description Tools/Datasets Conditions Output

Partition h2 Estimate h2 and calculate

τ* for each functional annotation

Stratified LDSC

GWAS summary

statistics

Functional

annotation models

τ*> 0

p < 0.05/51 (Bonferroni

correction)

List of prioritized candidate

functional annotation models

Calculate

scores

Calculates allelic scores for lead partitions of prioritized

functional annotation models in training samples

PLINK

GWAS summary

statistics

UKB EUR training

samples

Clump r2 = 0.2

Tests 370 p-value thresholds p2
[0.00001, 1]

PLINK scoring profiles for UKB

EUR training samples

Optimize

PRS

Constructs linear regression models for each candidate

tissue scores, selects model with greatest ΔR2 over current

model

Custom Python

tools

PLINK scoring

profiles

1st iteration: passes ANOVA test

for nested linear models

Subsequent iterations: passes Cox

test for non-linear models

Master model log (tissue,

partition, ΔR2, SNP count, etc.)

PRS model SNP list

Regression coefficients for

training samples

Validate PRS Generates allelic scores for AFR validation samples

Constructs linear regression models across all iterations

PLINK

Custom Python

tools

GWAS summary

statistics

UKB AFR

validation samples

None—final model has passed all

conditions in optimization

Validation model log (tissue,

partition, ΔR2, SNP count, etc.)

Regression coefficients for

validation samples

https://doi.org/10.1371/journal.pgen.1011356.t001
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TURF functional model.

(TIF)

S2 Fig. Adjusted R2 accuracy of EUR-to-AFR trans-ancestral PRS model for BMI, height,

HDL cholesterol, LDL cholesterol, and type 2 diabetes of the TITR optimization algorithm

for TLand functional model.

(TIF)

S3 Fig. Proportion of SNPs overlapping between TURF single tissue model (top 1/5/10/20/

50% thresholds) and TITR PRS model for BMI, height, HDL cholesterol, LDL cholesterol,

coronary artery disease, and type 2 diabetes.

(TIF)

S4 Fig. Proportion of SNPs overlapping between TLand single tissue model (top 1/5/10/20/

50% thresholds) and TITR PRS model for BMI, height, HDL cholesterol, LDL cholesterol,

and type 2 diabetes.

(TIF)

S5 Fig. Legend for tissue labels in TITR results–Figs 3, S1 and S2.

(TIF)

S1 Table. Lead tissue annotations by largest significant tau* S-LDSC prioritization for

TURF, TLand, and IMPACT functional models.

(XLSX)

S2 Table. SNP heritability captured by top 1/5/10/20/50% TURF and TLand annotations.

(XLSX)

S3 Table. UK Biobank African sample descriptions.

(XLSX)

S4 Table. Significance of differences in mean dR2 for single tissue PRS models between

standard, IMPACT, SURF, TURF, and TLand PRS models.

(XLSX)

S5 Table. Overlap of index and LD clumped SNPs between single tissue model SNPs and

TITR prioritized SNPs.

(XLSX)

S6 Table. Null model R2 values for each trait by population.

(XLSX)
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