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Extensive Variation in Chromatin
States Across Humans
Maya Kasowski,1,2* Sofia Kyriazopoulou-Panagiotopoulou,3* Fabian Grubert,1* Judith B. Zaugg,1*
Anshul Kundaje,1,3,4,5* Yuling Liu,8 Alan P. Boyle,1 Qiangfeng Cliff Zhang,1 Fouad Zakharia,1

Damek V. Spacek,1 Jingjing Li,1 Dan Xie,1 Anthony Olarerin-George,6 Lars M. Steinmetz,1,7

John B. Hogenesch,6 Manolis Kellis,4,5 Serafim Batzoglou,3 Michael Snyder1†

The majority of disease-associated variants lie outside protein-coding regions, suggesting a link
between variation in regulatory regions and disease predisposition. We studied differences in
chromatin states using five histone modifications, cohesin, and CTCF in lymphoblastoid lines
from 19 individuals of diverse ancestry. We found extensive signal variation in regulatory regions,
which often switch between active and repressed states across individuals. Enhancer activity is
particularly diverse among individuals, whereas gene expression remains relatively stable.
Chromatin variability shows genetic inheritance in trios, correlates with genetic variation and
population divergence, and is associated with disruptions of transcription factor binding motifs.
Overall, our results provide insights into chromatin variation among humans.

Association and gene expression studies
have linked disease predisposition to spe-
cific alleles (1–3) and identified inter-

mediate molecular phenotypes that may be

responsible for organismal differences (4–7).
However, the underlying mechanisms by which
genetic variation drives either disease or expression
differences remain poorly understood. Interindi-
vidual variability has been reported for transcription
factor (TF) binding (8–10) and deoxyribonuclease I
(DNase I) accessibility (11,12).However, TF studies
assay a very small fraction of regulatory elements,
whereas DNase I hypersensitivity does not distin-
guish between different types of regulatory elements
(e.g., enhancers versus promoters), is biased toward
active elements, and provides little information
on domain-level features (e.g., Polycomb-repressed
domains).

To further characterize human variation in di-
verse types of regulatory elements, we studied the
chromatin state of lymphoblastoid cell lines (LCLs)

derived from 19 individuals: five European (CEU),
seven Yoruban (YRI), and two Asian individuals
from the 1000 Genomes Project (including two
mother-father-daughter trios) (13), an additional
Caucasian individual (14), and four deeply se-
quenced individuals from the San population (15)
(table S1).WeusedRNAsequencing (RNA-seq) to
measure expression and chromatin immunoprecip-
itation followed by high-throughput sequencing
(ChIP-seq) to map five histone modifications
(H3K27ac, H3K4me1, H3K4me3, H3K36me3,
and H3K27me3) and two general factors (CTCF
and SA1, a subunit of cohesin) (figs. S1 and S2 and
tables S1 to S4). ChIP-seq reads were mapped to
each line’s phasedgenome to reducemappingbiases.

To systematically identify variable regions
across individuals, we used analysis of variance
(ANOVA) as well as DESeq (figs. S3 and S4)
(16). Active chromatinmarks H3K27ac, H3K4me1,
andH3K4me3, and the repressivemarkH3K27me3
show the highest fraction of variable regions, in
contrast to gene-body marks and RNA expres-
sion levels (Fig. 1A and fig. S4).

We additionally used ChromHMM (17) to
segment the genome of each individual into 15
chromatin states based on the combinatorial pat-
terns of the chromatin marks and CTCF (Fig. 1,
B and C, figs. S5 to S8, and table S5). We found
that enhancer states exhibit the most variability
(fig. S9), with bivalent (poised) enhancers having
the highest fraction of individual-specific regions,
followed by weak enhancers, followed by strong
active enhancers. Similarly, bivalent promoters are
more variable than active promoters and strongly
transcribed states.

The variability of chromatin marks is often de-
pendent on functional context defined by combi-
natorial chromatin patterns.H3K27ac andH3K4me3
show significantly higher variability at enhancers
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Fig. 1. Variation in chromatin, factors, and expression across indi-
viduals. (A) Number and fraction of enriched regions (for chromatin marks
and factors) and expressed genes (for RNA) that are variable across indi-
viduals. (B) Composition (emission probability) of five chromatin marks and
CTCF in 15 chromatin states: TssA (active promoters), TssF (flanking active
promoters), Tx (strong transcription), TxW (weak transcription), EnhA (active
enhancers with H3K4me3), TxEnhA (active enhancers in transcribed regions),
Enh (active enhancers without H3K4me3), TxEnh (active enhancers without

H3K4me3 in transcribed regions), EnhW (weak enhancers), TxEnhW (weak
enhancers in transcribed regions), TssP (poised promoters), EnhP (poised en-
hancers), ReprPC (Polycomb repressed), Ctcf (CTCF enriched regions), and Low
(low signal). (C) Examples of a nonvariable and a variable region. Coordinates
are in build hg19 of the human reference sequence. State colors are as in
(B). (D) log10 ratio of the observed probability that a region switches from
one state (row) to another (column) in any pair of individuals relative to
background switching across pairs of replicates.
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compared with promoters (fig. S10). This could
explain the apparent discrepancy between the high
variability of H3K4me3 and the low variability
of expression and gene body marks (Fig. 1A).
Furthermore, the repressive mark H3K27me3 is
significantly more variable when co-enriched with
other marks in bivalent states—such as poised en-
hancers and poised promoters—than in stable
Polycomb-repressed domains (Fig. 1B and fig. S10).

Investigating the dynamics of chromatin state
conversions among individuals, we found that
most significant state switches are between active
states, such as enhancers, promoters, or transcribed
regions, and repressed or weakly active states
(Fig. 1D and fig. S11). Although changes in ac-

tivity are common, switching between enhancers
and core promoter states is rare, highlighting that
these are distinct types of regulatory elements.

We examined the effects of enhancer varia-
bility on gene expression and found no signifi-
cant difference in expression variability between
genes with one variable enhancer and those lack-
ing variable enhancers. However, there is a signif-
icant increase in expression variability whenmore
than 60% of the gene’s enhancers vary (fig. S12A;
Wilcoxon’s rank sum test, P < 0.05), indicating
that changes in multiple enhancers are often re-
quired to alter gene expression. We also found
that 74% of nonvariable genes and 99% of var-
iable genes are associated with at least one var-

iable enhancer (24-fold enrichment, Fisher’s exact
test, P < 2.2 × 10–16) (15, 18) and that enhancer-
gene expression correlations are stronger for genes
with a single enhancer than for genes linked to
multiple enhancers (fig. S12B;Wilcoxon,P= 7 ×
10–5). Thus, a substantial fraction of the enhancers
that are variable across individuals do not result
in detectable differences in gene expression, sug-
gesting that compensatory regulatory effects, enhanc-
er redundancy, subtle gene expression variation,
or nonconsequential enhancer variation exist un-
der the experimental conditions examined.

Variable regions are enriched in single-nucleotide
polymorphisms (SNPs) relative to nonvariable
regions (2.8-fold; P < 2.2 × 10–16; Fisher’s exact
test), with an increased number of SNPs asso-
ciated with higher variability (fig. S13). Signal
variability also increases with nucleotide diversi-
ty (P < 1 × 10–10; Wilcoxon test) (15). Consist-
ently, the correlation between genotype and
signal is stronger for variable than nonvariable
H3K27ac peaks (P < 1 × 10–15; Wilcoxon test)
(Fig. 2A). Nonvariable H3K4me1 and H3K27ac
peaks have suppressed derived allele frequencies
in both the Yoruban and Caucasian populations
(P < 2 × 10–5; Wilcoxon test) and increased con-
servation scores (P< 0.005; binomial test) (15) com-
pared with variable regions, suggesting stronger
negative selection in nonvariable regions. Also,
the fraction of heterozygous SNPs with allele-
specific signal is highest for the active marks
H3K27ac, H3K4me1, and H3K4me3 (fig. S14A),
which is in agreement with cis effects on the var-
iability of these marks. Finally, rare variants (allele
frequency < 0.01 in the 1000 Genomes Project)
are enriched in variable H3K27ac regions com-
pared with nonvariable regions (P < 2.5 × 10–14;
two-sample t test), indicating that rare variants
may underlie enhancer variation.
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We observed strong correlation of allele-
specific signal between daughters and parents,
especially for CTCF, SA1, and the enhancer and
promoter marks, which suggests that the patterns
of chromatin modifications and TF binding are
heritable (Fig. 2B and fig. S14B). For the ma-
jority of marks, more than 75% of sites agree in
the direction of allelic bias between daughters and
parents (fig. S14, C and D). Gene expression is
less heritable (Fig. 2B), in agreement with pre-
vious studies (19).

Next, we analyzed variation across individu-
als grouped by ancestry. For all marks, ancestry
explains less than 20% of the variance at a ma-
jority of regions (fig. S15). The enhancer marks
H3K27ac andH3K4me1 have the largest fraction
of regions that discriminate ancestry groups [F-test
correctedP < 0.01 (15)] (Fig. 3, A and B, and figs.
S16 and S17, A and B), with signal divergence of-
ten correlating with genetic divergence (Fig. 3C).
The expression of genes overlapping these regions
shows a similar but weaker pattern (fig. S17C),
suggesting that the impact of genetic variation at
regulatory elements may be diluted at the level of
downstream expression. Regions with divergent
signal across ancestry groups are enriched for SNPs

compared with other regions for the same marks
(binomialP= 2 × 10–58 to 1.8 × 10–5 for allmarks)
(fig. S17D). They are also enriched for SNPs
with high fixation index (FST) (20), a measure of
genetic divergence across populations (binomial
P = 1 × 10– to 0.01) (Fig. 3D). Although the ob-
served signal patterns may not generalize to larger
samples, they establish a link between chromatin
variation and genetic divergence.

One possible mechanism through which ge-
netic variability leads to chromatin variation is
the disruption of TF binding (8, 12). We found that
variable regions of active chromatin marks are en-
riched for motif-disrupting SNPs (1.3- to 2.3-fold;
Fisher’s exact testP < 5.1 × 10–46) (fig. S18A).Of
the variable H3K27ac regions overlapping En-
cyclopedia of DNA Elements TF binding sites
in GM12878 (21), 32% show significant asso-
ciations between signal differences and motif dis-
ruptions (fig. S18B) (15). The most frequent motif
disruptions involve cell-type–specific regulatory
factors (Fig. 4A and fig. S19), some of which are
differentially associated with H3K27ac variation
at enhancer and promoter states (Fig. 4B). Fi-
nally, variable regions and allele-specific SNPs
are enriched for DNase I sensitivity quantitative

trait loci (dsQTLs), expression QTLs (eQTLs), and
genome-wide association studies (GWAS) SNPs,
providing further evidence of the functional im-
plications of chromatin variability (Fig. 4C and
fig. S20).

In summary, enhancers are highly variable and
may contribute to phenotypic differences between
individuals and ancestral groups through heritable
variation in histone modifications arising from
SNPs in TF binding sites.
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