
Trends
The majority of GWAS SNPs have been
identified in noncoding regions of the
genome. However, due to difficulties
determining which mutations are cau-
sal in noncoding regions, these SNPs
remain largely understudied.

Noncoding SNP annotation tools have
been developed to predict possible
causal mutations found outside of
genes in the genome, and offer users
a way to prioritize noncoding SNPs
identified by GWAS for experimental
validation.

SNP annotation tools make their pre-
dictions using different methodologies
and data types. Understanding how
these tools differ from one another
can be used to determine which tools
to use and potential biases to be aware
of.

We predict that the incorporation of
these tools into the GWAS pipeline will
result in a shorter turnaround time
between GWAS, genetic discovery,
and translational research.
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One of the formative goals of genetics research is to understand how
genetic variation leads to phenotypic differences and human disease.
Genome-wide association studies (GWASs) bring us closer to this goal by
linking variation with disease faster than ever before. Despite this, GWASs
alone are unable to pinpoint disease-causing single nucleotide polymor-
phisms (SNPs). Noncoding SNPs, which represent the majority of GWAS
SNPs, present a particular challenge. To address this challenge, an array
of computational tools designed to prioritize and predict the function of
noncoding GWAS SNPs have been developed. However, fewer than 40%
of GWAS publications from 2015 utilized these tools. We discuss several
leading methods for annotating noncoding variants and how they can be
integrated into research pipelines in hopes that they will be broadly applied in
future GWAS analyses.

Toward the Goal of Understanding Variation
Genome-wide association studies (GWASs) are a popular method of linking genomic variation
with human disease and have produced over 100 000 genomic region–disease associations to
date [1]. These studies are successful at narrowing down potential variants associated with a
disease; however, they are incapable of determining causative single nucleotide polymorphisms
(SNPs) on their own. GWAS variants are typically screened using a set of lead SNPs, which are
informative but often not causative. The causative SNP may lie anywhere within the linkage
disequilibrium (LD) block surrounding the lead SNP, but these can span over 100 kb and often
contain over 1000 individual SNPs. Improvements in the identification of causative SNPs from
GWASs will advance our understanding of disease mechanisms and reveal potential therapy
targets.

Fine mapping techniques using high-throughput imputation have the potential to refine GWAS
SNPs in LD loci down to a testable number, and can be used to make predictions of SNP
associations with a phenotype when paired with statistical predictions of association, such as
Bayesian refinement [2,3]. Indeed, combining fine mapping and functional annotations has
yielded important discoveries. For example, Bauer et al. [4] identified a single variant in LD with a
GWAS locus associated with hemoglobin disorders, which disrupts the motif of an enhancer in a
regulator of fetal hemoglobin, BCL11A, and now represents an attractive therapeutic target for
the treatment of hemoglobinopathies [4]. However, this methodology requires dense genotyping
and large sample sizes, and may not be effective for all loci. Because of these challenges,
researchers have now developed many computational tools designed to assist with the
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prioritization of GWAS SNPs to reduce the resources and time needed to experimentally validate
causative SNPs [5,6].

Although the vast majority of GWAS-implicated SNPs are found in noncoding sequence, the
majority of SNP annotation tools only annotate SNPs in coding regions of the genome [7]. This is
in part because noncoding SNPs are more challenging to annotate than SNPs in coding regions
where the consequences of variation are better understood. Landmark initiatives now provide
sufficient data to begin the task of predicting and prioritizing functional SNPs in noncoding DNA.
These include catalogs of human variation (1000 Genomes Project, International HapMap
Project), annotations of functional elements [Encyclopedia of DNA elements (ENCODE)], and
conservation information derived from multiple species alignments [8,9]. Since 2010, a handful of
tools to annotate noncoding SNPs have been released. These tools provide hypotheses to the
functional nature of noncoding SNPs, a powerful first step that reduces the pool of possible
variants for experimental follow-up. However, many studies do not take advantage of these
tools. In fact, of 44 GWASs released in 2015, only 16 use any sort of noncoding SNP annotations
for variant follow-up (see Table S1 in the supplemental information online).

Regulatory variants can have dramatic effects on gene regulation. Kasowski et al. [10] and
McDaniell et al. [11] initially demonstrated this on a genome-wide scale by showing allele-specific
binding of the transcription factor (TF) nuclear factor-kappa B and CCCTC-binding factor
(CTCF). Subsequently, Degner et al. [12] demonstrated that a single variant can result in both
disruption of TF binding and alteration of chromatin accessibility. Other studies have demon-
strated similar dramatic effects of noncoding variation on regulatory networks and gene
expression control mechanisms [13,14]. These findings suggest a mechanistic link between
regulatory variation and disease phenotypes.

It is clear that, by restricting experimental follow-up to easily classified variants, we likely miss a
substantial proportion of variants directly relevant to disease. Through broad application of
noncoding SNP annotation tools to GWAS, we can improve our understanding of genetic
disease predispositions. In the following sections, we review several leading noncoding SNP
annotation tools, examine their strengths and limitations, and discuss how they can be inte-
grated into GWAS pipelines to augment their findings. Their incorporation will significantly
accelerate discovery of disease-causal variants from GWASs and provide vital information to
shape hypotheses about their function.

Annotation of Functional SNPs
Tools for SNP annotation can take advantage of diverse genomic data types to provide putative
functional annotations or predict functional effects. Here, we divide the tools into three catego-
ries: functional, conservation, and machine learning based. While all of the tools reviewed here
utilize functional data, conservation-based tools also include measures of conservation, and
machine learning tools may incorporate multiple lines of evidence, including functional anno-
tations and conservation.

Functional Annotation
GWAS SNPs have been shown to be enriched for functional annotations, with 81% of GWAS LD
regions containing at least one functional SNP [15]. Many types of high-throughput assays are
used to predict features associated with putative regulatory function in the noncoding genome,
including DNase I hypersensitive sites sequencing (DNase-seq), assay for transposase-acces-
sible chromatin with high-throughput sequencing (ATAC-seq), formaldehyde-assisted isolation
of regulatory elements-sequencing (FAIRE-seq), TF ChIP-seq, histone modification ChIP-seq,
and expression quantitative trait loci (eQTL) analysis (Figure 1) [16]. In some cases, genomic
features such as distance from the nearest gene, guanine–cytosine content, predicted TF
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Figure 1. Data and Tools Used to Analyze Noncoding Variants. Single nucleotide polymorphism (SNP) aligned with functional (red) and conservation (blue) data,
machine learning methods (green), and tool features (yellow). Each tool discussed in this perspective is labeled with annotation types used in its noncoding variant analysis
platform. * represents optional input data sets supplied by the user. Abbreviations: 3C, chromosome conformation capture; 5C, chromosome conformation capture carbon
copy; CADD, combined annotation-dependent depletion; ChIA-PET, chromatin interaction analysis by paired-end tag sequencing; DANN, deleterious annotation of genetic
variants using neural networks; DNase-seq, DNase I hypersensitive sites sequencing; eQTL, expression quantitative trait loci; FAIRE, formaldehyde-assisted isolation of
regulatory elements; FunciSNP, Functional Identification of SNPs; GWAVA, genome-wide annotation of variants; TF, transcription factor; VEP, Variant Effect Predictor.
binding motifs, and manual annotations of published variants are also included. As many of these
analyses identify cell-type-specific interactions, the range of conditions (cell-types, stages of
development, etc.) for which data are available restricts the range of functional elements a tool is
able to detect. In addition, these methods will miss functional elements that do not coincide with
known annotation co-occurrence patterns. Examples of tools that annotate noncoding SNPs
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using only functional genomics information include the Ensembl Variant Effect Predictor (VEP),
RegulomeDB, and Functional Identification of SNPs (FunciSNP) [17–19].

Conservation
In addition to functional genomics data, including conservation data allows variants to be ranked
based on well-accepted measures of evolutionary constraint. Conservation is typically deter-
mined by multiple sequence alignments, from which we can estimate rates at which different
categories of genomic regions have evolved over time. Conservation can be measured by
comparing the substitution rate within a genomic region of interest to an estimate of the neutral
substitution rate. Regions with a significantly lower-than-expected substitution rate are consid-
ered to be conserved, and are therefore likely under functional constraint. However, because
humans have likely undergone recent rapid adaptions in tissue-specific regulation, strict con-
servation-based approaches to regulatory element detection may miss critical human-only
advancements in tissue types such as the brain [20]. Methods that integrate conservation into
their annotation include ANNOVAR, HaploReg, GWAS3D, and fitCons [21–24].

Machine Learning
Machine learning algorithms have recently become popular for SNP annotation because of their
multifaceted predictions based on robust statistical methods. These powerful tools are able to
build complex predictive models of SNP function [25]. All these methods incorporate functional
data and most incorporate conservation data to train their prediction models, each using
different models and approaches. Though powerful, machine learning methods are susceptible
to biases found in training sets and annotations such as enrichments of variants near genes,
gaps in functional annotations, or overfitting due to suboptimal parameterization or insufficient
training data. Much care is required to limit the effect these biases have on pattern prediction
[26,27]. In addition, the basis for functional categorization may not be intuitive, as reasons for
annotation may not be directly reported in the results. Current methods using machine learning
to prioritize candidate functional variants include genome-wide annotation of variants (GWAVA),
combined annotation-dependent depletion (CADD), deleterious annotation of genetic variants
using neural networks (DANN), FATHMM-MKL, deltaSVM, and DeepSEA [26,28–32].

Importantly, the data sets used to train machine learning methods can alter which variants they
call. As there is currently no gold-standard training set for detrimental noncoding variants,
noncoding annotation tools use a variety of data sets to train their algorithms. For example,
GWAVA and FATHMM-MKL use manually curated disease-associated variants from the Human
Gene Mutation Database [33], a data set composed of experimentally validated and likely
disease-associated variants. However, these databases do not contain randomly sampled
variants from across the genome and so are subject to ascertainment bias. GWAVA and
FATHMM-MKL attempt to mitigate these biases by sampling nearby nondisease-associated
variants. By contrast, CADD and DANN use randomly simulated deleterious variants and
conservation between humans and chimp to generate hypothetical sets of deleterious and
nondeleterious variants. Though this approach may reduce selection bias, using randomly
simulated variants risks capturing nondeleterious alleles in the deleterious training set, and
deleterious alleles in the nondeleterious training set, as it does not use any experimental measure
of deleteriousness. Newer methods such as deltaSVM and DeepSEA are forgoing the genera-
tion of detrimental SNP training sets altogether in favor of strict functional annotation to identify
cell-specific regulatory elements and randomly sampled matched control regions. However,
similar to randomly simulated variation, there is no guarantee that randomly selected control
regions do not confer some regulatory function or undiscovered disease association.

Finally, as machine learning methods do not provide functional annotations alongside predic-
tions of SNP deleteriousness, additional analysis using a functional- or conservation-based tool
Trends in Genetics, January 2017, Vol. 33, No. 1 37



or manual functional annotation may still be needed to suggest hypotheses for how functional
SNPs affect their associated disease phenotypes.

Integrating SNP Annotation into the GWAS Pipeline
The aforementioned tools offer a powerful way to improve the resolution of GWAS. By integrating
them into GWAS pipelines, as shown in Figure 2 (Key Figure), a list of SNPs in LD with the lead
SNP can be annotated and ranked according to their likelihood of function.

Many of these tools approach the variant annotation from the perspective of an individual variant
rather than considering all variants in LD with the reported SNP (e.g., RegulomeDB, CADD/
DANN, deltaSVM). For these methods, preprocessing with tools, such as IMPUTE2, is neces-
sary to identify SNPs in linkage with the lead SNP [34]. Other SNP annotation tools (e.g.,
FunciSNP, HaploReg, GWAS3D) incorporate LD SNPs without the need of additional tools.
However, it is important for researchers to consider the genomic background of their samples
when using tools that incorporate LD, as regions of LD vary between ethnicities. Because of this,
it may be advisable to perform independent imputation as is standard in GWAS before applying
these tools.

Not only can functional annotations narrow the pool of candidates for experimental follow-up,
but also the content of the functional associations (overlapping TF binding sites, chromatin
marks, etc.) can suggest casual mechanisms and help direct the strategies used for experi-
mental validation. Annotation tools that provide quantitative scores [such as RegulomeDB,
fitCons, and machine learning methods (Figure 1)] are particularly well suited to this application.
The scores provide a way to directly rank individual SNPs and prioritize them for follow-up.
Incorporating expert domain knowledge of the system(s) involved can further guide this process.
The associated annotations can provide direct clues to the function of the sequence harboring a
SNP of interest, leading to testable hypotheses regarding the tissues, cell types, pathways,
target genes, and specific regulatory mechanisms potentially disrupted by a given variant.

A final consideration in the use of these tools is the application interface provided to the
researcher. Some tools (e.g., FunciSNP, ANNOVAR, deltaSVM) only provide a command-line
interface that, while not particularly user friendly, is ideal for integration into bioinformatic
pipelines. Conversely, some tools provide Web interfaces with associated graphics and sorting
capabilities to allow a noncomputationally focused researcher to perform these analyses with
ease, allowing online visualization or opportunities to download scores for further analysis.
However, these methods may be difficult to incorporate into automated analysis pipelines. The
ideal interface will likely be defined by the research process of each group and should be
considered on a case-by-case basis.

A recent example of the successful integration of annotation analysis into the GWAS pipeline
comes from Higgins et al. [35]. This study examined 31 putative causal SNPs associated
with psychotropic drug response, narrowed down from 2024 SNPs aggregated across 26
GWAS in the National Human Genome Research Institute (NHGRI) GWAS catalog [1]. They
first imputed lead GWAS SNPs from using LD data from HaploReg. Imputed SNPs were
then analyzed by SNP annotation methods and additional functional features, including
RegulomeDB, HaploReg, and chromatin state. This allowed the authors to identify putative
functional SNPs within their LD regions, as well as assign possible regulatory activity to the
regions associated with these SNPs (promoter, enhancer, transcribed domain). Finally, by
incorporating 3D chromatin interaction data, including GWAS3D analysis, the authors were
able to predict cis-regulatory interactions. In total, these predictions provided hypotheses of
SNP regulatory activity and interactions, which allow a higher confidence starting point for
experimental verification.
38 Trends in Genetics, January 2017, Vol. 33, No. 1



Key Figure

Integrating Single Nucleotide Polymorphism (SNP) Annotation into the
Genome-wide Association Study (GWAS) Pipeline
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Another clear demonstration of the power of SNP annotation of GWAS and subsequent
experimental validation was recently published by He and colleagues [36]. This study used
HaploReg functional annotations, along with known TF binding and histone modification data, to
identify multiple novel functional regions and four variants likely to be functional in papillary thyroid
cancer. They determined that these variants lead to increased enhancer activity by luciferase
assay and increased TF binding by ChIP assay. Using chromosome conformation capture (3C),
the authors also identified the gene targets of these enhancers. In this study, the use of
noncoding SNP annotation tools, along with additional functional annotations, allowed the
authors to distinguish novel enhancers, within which they were able to prioritize and validate
SNPs of interest.

Validation of Tools on Liver SNPs
To demonstrate the applicability and accuracy of these methods, we used four noncoding
annotation tools to examine human liver enhancer SNPs previously shown to affect enhancer
activity by massively parallel report assay [37] (see the ‘Methods’ section). None of these variants
occurs in dbSNP and would be considered de novo variants. The chosen liver data sets were not
used to train any of the machine learning methods examined here. Using the default settings for
the online interfaces of RegulomeDB, CADD, FATHMM-MKL, and DeepSEA, we found that four
of the top seven SNPs that correlated with the greatest change in translational activity were
called putatively detrimental or functional by all of the assayed methods, two additional SNPs
were called by three of the four methods, and six more SNPs were called by just two of the
methods (see Table S2 in the supplemental information online). Only four of the ten SNPs with no
effect on transcriptional activity were called benign or nonfunctional by all of the assayed
methods.

DeepSEA scores had the greatest correlation with the absolute log2-fold change on transcrip-
tional activity (R2 = 0.307), followed by RegulomeDB (R2 = 0.262), CADD (R2 = 0.187), and
FATHMM-MKL (R2 = 0.168; Figure 3). DeepSEA and RegulomeDB also had the highest
agreement when comparing scores (R2 = 0.677). Interestingly, all methods were biased toward
predicting SNPs, leading to a decrease in transcriptional activity rather than an increase.
Though this trend makes sense for annotation-based methods such as RegulomeDB, the
ability to identify SNPs with a positive effect of transcription is surprisingly low for sequence-
based methods CADD and FATHMM-MKL. These results are striking, as none of the tools
examined includes measures of SNP effects on gene expression in their prediction models.
Discrepancies among scores given to the same variant by different annotation tools are not
surprising. McCarthy et al. [38] explored the effect of annotation tools on coding variant
prediction using ANNOVAR and VEP, and found only an 87% agreement between annotation
calls. We expect to find far more discrepancies in noncoding regions of the genome, where
markers of regulatory activity are far less understood. As an independent large-scale compari-
son of these methods has yet to be published, it remains unclear which tool, if any, is generally
the most effective.
Figure 2. Following GWAS analysis, lead SNPs implicated as important in disease risk can be passed to an SNP annotation
tool. Annotation tools sensitive to linkage disequilibrium (LD) regions, or who make predictions covering genomic regions
can be used directly, while those tools without imputation methods must first be put through an imputation program to make
predictions for all SNPs in a region of LD. Once a SNP annotation tool has been implemented, the resulting scores or
functional annotations can be used to prioritize candidate SNPs for further experimental validation following generation of a
hypothesis of function. Abbreviations: 3C, chromosome conformation capture; CADD, combined annotation-dependent
depletion; CRISPR, clustered regularly interspaced short palindromic repeats; DANN, deleterious annotation of genetic
variants using neural networks; EMSA, electrophoretic mobility shift assay; FunciSNP, Functional Identification of SNPs;
MPRA, massively parallel reporter assay; VEP, Variant Effect Predictor.
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Figure 3. Analysis of Liver Variants Using Noncoding Annotation Tools. Effect size represents the absolute value log2 change of the transcriptional activity of the
variant compared with wild type. R2 values are given for all data points, and for positive and negative data points individually. Red points represent variants correlated with
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Our comparison demonstrates disparities in the agreement between the calls of different tools,
suggesting that the use of multiple tools in tandem may increase the confidence of called SNPs,
and this strategy has been successful in multiple published studies [39–41]. For example, Chen
and colleagues [42] utilized VEP, RegulomeDB, ANNOVAR, and HaploReg to predict the
likelihood of function and regulatory feature type for 9184 noncoding variants from the NHGRI
database. Strikingly, they were able to predict regulatory functions for 96% of these variants.
Furthermore, they randomly selected three variants from their list for functional testing in a
reporter assay, and found all three to have enhancer or silencer activity. These results highlight
the promise of using multiple noncoding annotation methods to increase the confidence of
predicted casual SNPs. Indeed, combining multiple annotation tools may balance out the biases
inherent to single tools, thus yielding more reliable predictions.
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Outstanding Questions
What additional resources will
researchers need to feel that noncod-
ing annotation tools are both valuable
and accessible?

Will the increased use of noncoding
SNP annotation tools increase the fre-
quency of experimental validations for
noncoding mutations? How will
increasing the number of validated non-
coding SNPs change how we think
about noncoding variants?

What insights can be gained from
exploring currently existing whole-
genome sequencing data by using
these tools? Can these studies identify
some of the hidden heritability of com-
plex human traits?

What additional data, such as DNA
methylation or 3D genomic structure,
can be integrated into noncoding
annotation methods to increase the
confidence of their predictions? What
types of noncoding features remain
undetectable by current noncoding
annotation methods?
Experimental SNP Validation
Many experimental methods exist for investigating the effects of SNPs, but without specific
functional hypotheses, choosing an appropriate method of experimental follow-up is challenging
[43,44]. Integrating annotation tools that report functional information into the GWAS pipeline
provides multiple lines of evidence to suggest appropriate tests, including the correct tissue or
cell type, how a SNP affects regulation at a locus (e.g., by altering TF binding), the gene target of
the regulatory region, and the expression-level effect on the target gene. In particular, functional
annotations provided by many tools can suggest the cell type in which a SNP may have an effect.
This is particularly crucial in noncoding regions of the genome, as most regulatory regions are
tissue specific. Thus, cell-type predictions can inform decisions on which cells to use for in vitro
analyses, such as luciferase reporter assays, and which tissues to examine in in vivo analyses,
such as immunohistochemistry.

One method commonly used to investigate the disruption of protein–DNA interactions by
regulatory SNPs is electrophoretic mobility shift assay. This assay can be used to determine
if a protein is capable of interacting in vitro with a DNA sequence of interest, and can be used to
assay if DNA–protein interactions are perturbed by introducing a SNP [45]. Proteome-wide
analysis of SNPs can also be used to identify SNPs producing differential TF binding [46].

Many GWAS findings are distal to any obvious target gene and many regulatory elements have
been shown to act on a gene other than the nearest gene [47]. To identify the target for a
regulatory region, one can use a 3D genomic assay such as 3C, chromosome conformation
capture-on-chip (4C), chromosome conformation capture carbon copy (5C), chromatin inter-
action analysis by paired-end tag sequencing, Hi-C, Capture C, or Capture Hi-C (CHi-C) [48–
52]. The GWAS3D annotation tool includes a set of 3D interaction data in its annotations and
some tools include eQTL information that may give an idea of the gene regulatory interaction. In
cases where there are no current data, an assay such as 4C will allow interrogation of all
interactions with the significant locus. Following target gene identification, expression changes
can be assayed using reverse transcription PCR. However, though these methods can dem-
onstrate regulatory interactions between noncoding sequences and target genes, they cannot
discern specific functional effects.

Reporter assays offer a complementary approach to the aforementioned methods, offering the
ability to directly measure the functional effect of a variant on gene expression levels. They work
by placing a regulatory element upstream of a minimal promoter and a reporter gene in a
plasmid, which can be transfected into an organism and analyzed for regulatory activity [36].
High-throughput forms of these assays can be used to measure functional consequences of
variation more broadly [53,54]. Likewise, transgenic animal models, including mice and zebra-
fish, offer powerful tools to assay the phenotypic effect of mutations in vivo [55,56]. With the
discovery of clustered regularly interspaced short palindromic repeats (CRISPR) editing, non-
coding variants and structural changes may now more easily be investigated in these more-
complex model systems [57].

Concluding Remarks
We believe computational SNP annotation tools will prove invaluable to the interpretation of
GWAS SNPs. The tools reviewed here provide annotations and predictions of the regulatory
effects of these often-difficult-to-interpret variants using three primary methodologies: functional
annotations, conservation, and machine learning (Table 1).

Though the majority of GWAS analyses using these methods stop at selecting possible
functional variants within an LD region, the power of these annotation methods will come from
increasing the speed and ease of experimentally validating putative causal SNPs associated with
42 Trends in Genetics, January 2017, Vol. 33, No. 1



Table 1. Online Resources for Accessing Noncoding SNP Annotation Toolsa

Tool URL Refs

VEP VEP incorporates annotations from the Ensembl database, allowing it
to make predictions genome-wide as well as predict tissue-specific
activity for 13 human cell lines.
http://www.ensembl.org/info/docs/tools/vep/script/index.html

McLaren et al. [17]

RegulomeDB RegulomeDB uses a heuristic scoring system to catalog the
likelihood that a given SNP or indel resides in a functional region,
using functional data from over 100 cell types.
http://regulomedb.org

Boyle et al. [18]

FunciSNP FunciSNP is an R/Bioconductor package that employs user input
annotations to prioritize SNPs, allowing users to customize their
annotations to query a cell type of interest.
http://www.bioconductor.org/packages/release/bioc/html/FunciSNP.html

Coetzee et al. [19]

ANNOVAR ANNOVAR is a command line tool that uses region-based
annotations to annotate noncoding variants and insertions and
deletions (indels), in addition to comparing them to known variation
databases.
http://annovar.openbioinformatics.org

Wang et al. [21]

HaploReg HaploReg is a searchable repository for SNPs and indels from the
1000 Genomes Project, providing a summary of known annotations
for variants within an LD block.
http://www.broadinstitute.org/mammals/haploreg/haploreg.php

Ward and Kellis [22]

GWAS3D GWAS3D evaluates SNPs and indels by analyzing their 3D chromosomal
interactions and disruptions to TF binding affinity. It outputs scores as
well as a circle plot mapping local 3D interactions.
http://jjwanglab.org/gwas3d

Li et al. [23]

fitCons fitCons uses the INSIGHT method to predict the probability that
SNPs will influence fitness by screening for signatures positive and
negative selection using data from three cell types.
http://compgen.bscb.cornell.edu/fitCons/

Gulko et al. [24]

GWAVA GWAVA trains on a random forest algorithm using disease mutations
from HGMD and control variants from the 1000 genomes project to
predict if queried variants are functional.
ftp://ftp.sanger.ac.uk/pub/resources/software/gwava/

Ritchie et al. [28]

CADD CADD trains on a linear kernel support vector matrix using simulated
variants as deleterious variants and alleles fixed between human and
chimpanzee as control variants.
http://cadd.gs.washington.edu

Kircher et al. [26]

DANN DANN trains on a nonlinear learning neural network algorithm using
the same training set data (fixed alleles vs. simulated variants) as
CADD.
https://cbcl.ics.uci.edu/public_data/DANN/

Quang et al. [29]

FATHMM-MKL FATHMM-MKL implements a kernel-based classifier to estimate
complex nonlinear patterns using HGMD pathogenic and
1000 Genomes Project control variant training set data.
http://fathmm.biocompute.org.uk

Shihab et al. [30]

deltaSVM deltaSVM uses a gapped k-mer support vector machine to estimate
the effect of a variant in a cell-type-specific manner.
http://www.beerlab.org/deltasvm/

Lee et al. [31]

DeepSEA DeepSEA uses a multilayered hierarchical structured deep learning-based
sequence model to predict functional SNPs with single nucleotide
sensitivity using ENCODE and Roadmap Epigenomics data.
http://deepsea.princeton.edu/job/analysis/create/

Zhou and
Troyanskaya [32]

a Abbreviation: HGMD, Human Gene Mutation Database.
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disease [58] (see Outstanding Questions). This improvement will be primarily through reducing
the set of variants for experimental follow-up and guiding hypothesis generation regarding their
target tissues and regulatory impacts. Validated causal SNPs can then feed back into future
development efforts, further refining these techniques and improving their utility.

As gaps in functional data are filled and high-throughput sequencing technologies improve, SNP
annotation methods will become more powerful. Notably, increased adoption of whole-genome
sequencing technology, along with improvements to the technologies themselves, will vastly
improve the breadth and resolution of available sequence data. This will allow not only noncoding
variants to be detected, but also improved annotations of structural variation such as copy
number variation [59]. In addition, the development of ensemble predictors, similar to those
available for coding annotations, would allow users to run several annotation models in parallel,
providing the same benefit as implementing multiple tools. The expansion of functional data sets
across a wide range of cell types will be key to improving variant predictions for tissue-specific
phenotypes. Finally, incorporation of 3D structural data will likely improve our ability to assign
regulatory SNPs to their target genes, with additional improvements in our ability to discern their
functions and place them in their biological context, a necessary step for critical pharmacoge-
netic advancements.

The widespread use of noncoding SNP annotation methods will help us predict the effects of
genomic variation, elucidate mechanisms and pathways of disease, and bring us closer to
understanding the full complexity of the human genome.

Methods
SNP Selection
Variants in Figure 3 were chosen from two human enhancer loci previously examined at a
nucleotide level by massively parallel reporter assay [37]. Enhancer loci were divided into fifths,
with three SNPs chosen from each region (ALDOB, hg19:chr9:104195570–104195820;
ECR11, hg19:chr2:169939182–169939682). From each fifth we selected the two SNPs that
correlated with the greatest positive or negative change in transcriptional activity, and the first
occurrence of a SNP leading to no change (or in the absence of any such SNP, the variant
closest to 0 translational activity) in the region, for a total of 30 SNPs.

Noncoding SNP Validation
RegulomeDB, CADD, FATHMM-MKL, and DeepSEA were all accessed through their online
portals, and run using their default parameters. Variants were submitted in variant call format (VCF)
and VCF-like formats. For RegulomeDB, all variants returning a score of ‘No Data’ were given a
score of 7 for downstream analysis. For DeepSEA, functional significance scores were used.

Supplemental Information
Supplemental information associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tig.

2016.10.008.
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